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Abstract—The topological quantum error correction (TQEC)
scheme is promising for scalable and reliable quantum computing.
A TQEC circuit can be modeled by a three-dimensional diagram,
and the implementation resource of a TQEC circuit is abstracted to
its space-time volume. Implementing a quantum algorithm with a
reasonable physical qubit number and reasonable computation time
is challenging for large-scale practical problems. Therefore, mini-
mizing the space-time volume of a TQEC circuit becomes a crucial
issue. Previous work shows that bridge compression can greatly
compress TQEC circuits, but it was performed only manually. It is
desirable to develop automated compression techniques for TQEC
circuits to achieve low-overhead, large-scale quantum computations.
In this paper, we present the first work that can automatically
perform bridge compression on TQEC circuits. Compared with the
state-of-the-art method, experimental results show that our proposed
algorithm can averagely reduce space-time volumes by 83%.

I. INTRODUCTION

Quantum computing has attracted much attention in recent years due
to its capabilities in achieving substantial speedup on several classes
of problems (e.g., factorization [1]) that are considered intractable in
classical computing. However, large-scale quantum computing is chal-
lenging because quantum devices could suffer from significant noise from
the environment and may thus produce faulty results. Therefore, fault-
tolerant quantum circuits are needed for the scalability and reliability of
quantum computing.

The topological quantum error correction (TQEC) scheme is promis-
ing for scalable fault-tolerant quantum computation [2]. Based on the
Raussendorf code [3], quantum information is encoded into topological
cluster states in a 3D lattice structure [4] consisting of physical qubits.
Quantum computation is achieved by manipulating so-called defects,
specific contiguous regions where the physical qubits are removed in
the lattice [2]. According to the basis used for initialization and mea-
surements, a defect is either primal (X-basis) or dual (Z-basis). A logical
qubit is formed by a pair of same-type defects, and a logical controlled-
NOT (CNOT) gate is implemented by braiding primal defects around
dual defects. Furthermore, a quantum algorithm can be synthesized to a
visual representation called geometric description in the surface code [2],
which describes the qubit initialization/measurement (I/M), the defect
configuration, and the positions of state injections and state distillation
boxes [5]. Besides, we can convert any quantum circuits into the ICM
representation [6] that consists of qubit (I)nitialization, (C)NOT gates,
and (M)easurements, and an ICM circuit can be mapped to a canonical
geometric description [7]. For example, Figure 1(a) shows an ICM
circuit with three CNOT gates, and Figure 1(b) shows the corresponding
canonical geometric description with three dual loops l1, l2, and l3
braided around primal loops. The functionality of a TQEC circuit remains
unchanged under any topological deformation, which means that the
resulting braids are topologically equivalent to the canonical braids [5].

The required resource of a TQEC circuit is abstracted to its space-
time volume of the geometric description. The space volume represents
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Fig. 1. An example of a quantum circuit with three CNOT gates. (a) The
ICM representation. (b) The canonical geometric description. (c) The
compressed geometric description after topological deformation. (d) The
optimized geometric description after bridge compression.

the 2D quantum hardware resources (i.e., the number of physical qubits)
for quantum computing, and the time volume represents the required
executing time steps for quantum operations. To solve difficult problems
in the real world, minimizing the space-time volume for large-scale
TQEC circuits becomes crucial.

During the past decade, many approaches to synthesize and optimize
TQEC circuits have been proposed. Paler et al. [5] presented the first
framework to synthesize a TQEC circuit from an arbitrary quantum
algorithm. Paler et al. [8] developed a TQEC circuit synthesis method
with compact structures while considering online scheduling. Both of the
works [5], [8] focus on synthesizing general TQEC circuits and do not
contain effective volume optimization techniques. Fowler and Devitt [9]
presented a non-topological deformation called bridge compression to
compactify a TQEC circuit with manual efforts substantially. Paetznick
and Fowler [10] presented an efficient force-directed algorithm to mini-
mize the space-time volume. Nevertheless, the forced-directed algorithm
may be stuck in a local minimum, and the solution quality is highly
related to the initial canonical geometric description. Lin et al. [11]
proposed an efficient depth minimization technique for TQEC circuits
with 1D and 2D qubit arrangements, which selects non-conflict dual-
defect routing patterns by solving a maximum weighted independent set
problem. They also proved the NP-hardness of the qubit routing problem
in the layout synthesis of TQEC circuits. However, their approach only
considers the depth compression (along the time axis), so the space-time
volume of a TQEC circuit may not be globally minimized.

To lower the overhead of large-scale quantum computing, it is
desirable to develop an automated tool to efficiently and effectively
optimize the space-time volume of TQEC circuits. To the best of our
knowledge, many studies focus on the optimization using topological
deformation, but few works apply non-topological deformation such
as bridge compression for automated space-time volume minimization,



which can potentially compress TQEC circuits much more than the
topological one. Figure 1(b) shows a canonical geometric description
with a volume of 54 (9×3×2). Figure 1(c) shows a compressed circuit
with a volume of 32 (4×4×2) after only topological deformation, and
Figure 1(d) shows an optimized circuit with a volume of 18 (3×3×2)
after bridge compression. In this example, we can observe that bridge
compression has great potential to achieve much lower space-time
volume than only performing topological deformation.

In this paper, we present a space-time volume optimization algorithm
for TQEC circuits to realize low-overhead quantum computation. Our
proposed algorithm applies bridge compression technique [9] to compact-
ify TQEC circuits with the aid of the modularization proposed by Asai
and Yamashita [12]. The main contributions of this paper are summarized
as follows:
• We present the first work that automatically optimizes the space-

time volume of TQEC circuits by bridge compression while
considering state distillation boxes and time-ordered measurement
constraints.

• We develop an iterative bridging algorithm to construct bridge struc-
tures, unlike the previous work that performs bridge compression
with manual efforts.

• We propose a time-ordering-aware 2.5D placement for compaction
of TQEC circuits and the satisfaction of time-ordered measurement
constraints.

• We propose friend net-aware routing to reduce the required routing
resource under topological deformation effectively.

• Experimental results show that our proposed algorithm can aver-
agely achieve 83% space-time volume reduction compared with the
state-of-the-art method [11].

The remainder of this paper is organized as follows. Section II
introduces state distillation boxes, time-ordered measurement constraints,
modularization, and the bridging rule, and then formulates the TQEC
circuit compression problem. Section III details the core techniques of
our algorithm. Section IV shows the experimental results, and Section V
concludes this paper.

II. PRELIMINARIES

This section briefly introduces state distillation boxes in TQEC
circuits, time-ordered measurement constraints, the concept of modu-
larization, and the bridge compression technique. Then, we formulate
the TQEC circuit compression problem.

A. State Distillation Box
In the TQEC scheme, a single-qubit rotation gate can be implemented

through teleportation with CNOT gates and logical ancillary states |Y 〉
and |A〉 [5]. These ancillary states must be prepared before injected
into the circuit. Additionally, distillation circuits are used to generate
a single high-fidelity ancillary state from multiple low-fidelity ones. In
this paper, we use a box to hold the place for a distillation circuit in
geometric descriptions [5].

B. Time-ordered Measurement Constraint
For TQEC circuits, most gates are invariant under any topological

deformation. However, the measurements of certain gates (e.g., T gate)
should obey a relative time ordering in the ICM representation. Fig-
ure 2(a) shows a T gate in the ICM representation, where the topmost
Z-basis measurement must be performed before the other four selective
teleportation measurements [6]. Figure 2(b) shows a valid geometric
description of the circuit in Figure 2(a), which meets the time-ordered
measurement constraint. Note that in this paper, time goes from left to
right.

Furthermore, the selective teleportation measurements of distinct T
gates operating on the same qubit in the ICM representation should also
obey a time ordering [6]. The selective teleportation measurements of a T
gate must be performed after those of the previous T gate are performed.
Figure 2(c) shows a circuit with two T gates operating on a qubit,
and the corresponding ICM representation is shown in Figure 2(d). To

transform the circuit into a geometric description, we need to ensure that
the selective teleportation measurements of the first T gate (the left dotted
box) must be performed before the selective teleportation measurements
of the second T gate (the right dotted box) are performed.
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Fig. 2. (a) A T gate in the ICM representation with |Y 〉 and |A〉 state
injection . (b) The TQEC canonical form of a T gate with a |Y 〉 box
and an |A〉 box. (c) An example circuit with two T gates operating on
the same qubit. (d) The ICM representation of (c).

C. Modularization
Asai and Yamashita [12] proposed modularization that transforms the

complicated TQEC compression problem into a placement-and-routing
problem. Modules of a TQEC circuit are derived from the canonical
form by breaking all dual loops into some two-pin nets. The parts of
dual loops penetrating a primal loop are kept in modules to preserve the
braiding information, so a module consists of a primal loop enclosing
dual segments. For instance, Figure 3(a) shows six modules and nine nets
derived from the canonical form in Figure 1(b) by breaking all dual loops,
where mi denotes the ith module. Figure 3(b) shows the labels of pins
in each module, where pij,k denotes the kth pin of the jth dual segment
enclosed by module mi. After placing modules with volume optimiza-
tion, all the dual nets will be routed to restore dual loops. Note that the
nets of a dual loop can be reconfigured as long as the dual loop can
be restored. For example, both {(p23,2, p51,2), (p51,1, p42,1), (p42,2, p23,1)}
and {(p23,2, p51,2), (p51,1, p42,2), (p42,1, p23,1)} are valid net sets for l3 in
Figure 3.

D. Bridge Compression
The bridge compression technique is proposed to lower the TQEC

computation overhead by Fowler and Devitt [9]. A bridge can only be
added between two disjoint finite extent same-type defect structures.
After adding a bridge, the two structures are merged by the continuous
common segment, defined as the segments of the two structures that pass
through the same loops in the identical order. To achieve better circuit
compaction, we should bridge two structures with a longer continuous
common segment. Figure 4(a) shows an initial TQEC circuit. To obtain
the longest continuous common segments, we can topologically deform
the TQEC circuit, as shown in Figure 4(b). Then, a bridge is added
between the two dual loops (structures) shown in Figure 4(c), and
Figure 4(d) shows the resulting bridge structure consisting of two dual
loops by merging the common segment.

Note that we can add only one bridge between two structures; that
is, the two structures would be merged by only one continuous segment.
Otherwise, an extra loop would be induced, which will change the
computation and thus is forbidden. For example, Figure 4(e) shows a
wrong bridge structure from Figure 4(a) because there are two merged
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Fig. 3. (a) The modules and nets derived from Figure 1(b). (b) The labels
of pins in each module.

common segments, and an extra dual loop is thus induced in the middle.
Although we can bridge two disjoint primal/dual structures, however,
we only add a bridge between dual structures to simplify and tackle the
TQEC circuit compression problem.

(b)(a) (c)

Dual defect
Primal defect

(e)(d)

Fig. 4. (a) The initial TQEC circuit. (b) The circuit after topological
deformation. (c) A bridge added between two dual loops. (d) A dual
bridge structure consisting of two dual loops derived from (a). (e) A
wrong bridge structure.

E. Problem Formulation
We formally define the TQEC circuit compression problem below:
Problem 1 (TQEC Circuit Compression Problem): Given a quantum

circuit synthesized from a quantum algorithm, generate a 3D geometric
description for TQEC computation such that the space-time volume is
minimized while the time-ordered measurement constraints are satisfied
and state distillation boxes are integrated.

III. PROPOSED ALGORITHMS

The space-time volume optimization of TQEC circuits is complicated
due to the maintenance of braids, the integration with state distillation
boxes, and the time-ordered measurement constraints. Therefore, we
propose an algorithm to optimize the space-time volume of TQEC
circuits by bridge compression and topological deformation with the aid
of modularization [12]. Our proposed algorithm consists of four major
stages: (1) preprocess including gate decomposition and modularization,
(2) iterative bridging, (3) module placement, and (4) dual-defect net
routing. Figure 5 shows the overall flow of our proposed algorithm. The
following subsections detail each stage.

3D Geometric Description

Preprocess

Quantum Circuit

Dual-defect Net Routing

Module Placement

Module Clustering

2.5D Placement

Iterative Bridging

Fig. 5. Overview of our algorithm.

A. Preprocess
Each quantum computing architecture supports a specific gate set

for universal computations. For TQEC computations, we apply the
method [5] to decompose the gates of an arbitrary quantum circuit into
a list of CNOT gates and ancillas (i.e., ICM representation). Next, the
ICM circuit is mapped to the canonical geometric description. According
to the canonical form, a TQEC circuit is decomposed into modules and
nets by modularization.

B. Iterative Bridging
After the preprocessing stage, the iterative bridging is performed to

merge dual loops into bridge structures by adding bridges. A bridge
structure is composed of several bridged dual loops. For example, there
is one bridge structure in Figure 4(d). During the bridging process, each
dual loop maintains a set of chains for the flexibility of bridging. Each
chain is a sequence of consecutive pins, and the starting pin and the
ending pin are both called endpoint pins. Initially, for every loop, the
two pins of each penetrated module form a chain. After a loop is merged
to a bridge structure, the chains of loops in the bridge structure may be
extended since they form a continuous common segment with the merged
loop. Besides, a loop in a bridge structure is said to be reconstructable if
its chains can be restored to a single loop by connecting all of its chains.
Moreover, if two dual loops penetrate the same module, the module is
called a common module of the two loops. For example, in Figure 3(a),
module m4 is a common module of l1 and l3 since both dual loops
penetrate m4. Furthermore, if loop li has at least one common module
with loop lj , then li is called a relative loop of lj and vice versa.

Algorithm 1 shows our proposed iterative bridging algorithm to
iteratively add bridges and merge dual loops into a bridge structure.
First, all dual loops are pushed into set O and marked as unprocessed
(line 1). Once a dual loop is merged to a bridge structure, it will be
removed from O and marked as processed. In each iteration, we select
an unprocessed loop li from O as the initial bridge structure b (line 4)
and push the unprocessed relative loops of li into the max-priority queue
Q (lines 5–6), which are candidate loops that could be merged to b. The
priority of a loop in Q is determined by its number of common modules
with b since we tend to merge a loop into a bridge structure with a
potentially longer continuous common segment. Moreover, the loops in
Q are extracted sequentially until Q is empty (lines 8–9), and we check
whether the extracted loop le can be merged to b (lines 10–12). If le fails
to be merged to b, it would never be pushed into Q in the current iteration.
On the other hand, if le can be successfully merged to b (line 13), the
chains of loops in b will be updated according to the continuous common
segment of b and le (line 14). Then, le’s unprocessed relative loops are
pushed into Q as merged candidates (line 15). Besides, the keys to loops
in Q would be updated accordingly since le is merged to b (line 16).
Finally, le would be removed from O and marked as processed (line 17).



Algorithm 1 IterativeBridging(D)
Input: D: the set of dual loops.
Output: B: the set of bridge structures.
1: Push all dual loops in D into set O
2: B ← ∅
3: while O is not empty
4: Select loop li from O as initial bridge structure b
5: Initialize max-priority queue Q
6: Push the unprocessed relative loops of li into Q
7: Remove li from O and mark li processed
8: while Q is not empty
9: Extract loop le from Q

10: Construct bridge graph Gb,le

11: Determine the order of critical vertices
12: Perform path finding for critical vertices
13: if a valid path exists in Gb,le

14: Merge le into b and update the chains of loops in b
15: Push the unprocessed relative loops of le into Q
16: Update the keys to loops in Q
17: Remove le from O and mark le processed
18: B ← B ∪ b
19: return B

Loop le could be merged to bridge structure b if we can find a
continuous common segment that penetrates all common modules of
b and le, and the continuous common segment cannot destroy the
reconstructability of all loops in b. To find a continuous common segment
of b and le, we construct a bridge graph Gb,le = (V,E). The bridge
graph construction consists of two steps: vertex construction and edge
construction.

1) Vertex Construction: First, the pins of common modules be-
tween b and le are vertices in Gb,le . Second, if two chains belonging
to different loops in b share a common endpoint pin, then the endpoint
pin is also a vertex in Gb,le . Note that for a bridge structure, we only
need to consider one dual segment in a module. That is, each module
contains only two pins for a bridge structure, so we use m′i to denote a
module instead of mi in b. The vertex derived from pin p′ij is denoted
by vij , where p′ij denotes the jth pin of module m′i in b.

2) Edge Construction: First, if pi1j1 and pi2j2 are endpoints of
different chains within a loop, then edge e(vi1j1 , v

i2
j2
) is constructed in

Gb,le . Second, for each pair of consecutive pins pi3j3 and pi4j4 in a chain,
then edge e(vi3j3 , v

i4
j4
) would be constructed if both vi3j3 and vi4j4 exist in

Gb,le .
To merge le to b, the continuous common segment should penetrate

all common modules of le and b. It implies that the vertices derived
from the pins of common modules should be connected in series, and
such vertices are called critical vertices. Therefore, our target is to find
a path passing through all critical vertices in a specific order while the
path does not destroy the reconstructability of each loop in b. Actually,
the path indicates the continuous common segment for bridging b and
le. Before path searching, we need to determine the connecting order of
critical vertices. A valid connecting order can be obtained by following
the two pin vertices of each common module sequentially. For example,
for two common modules m′1 and m′2, the order 〈v11 , v12 , v21 , v22〉 is valid,
but the order 〈v11 , v21 , v22 , v12〉 is invalid due to the discontinuity of the
pin vertices of m′1 (i.e., v11 and v12).

After the connecting order is determined, we perform path searching
on Gb,le in order to find a path that follows the specific vertex order.
Once a path is found in Gb,le , we will check if it is a valid path defined
as a path that does not destroy the reconstructability of the loops in b. If
a valid path is found, then le would be merged to b, and all the chains
associated with the path would be updated. For edges in the valid path,
if it connects two disjoint chains within a loop in b, the chains would
be connected as one chain. The continuous common segment becomes
a chain of le.

The whole iterative bridging process terminates when all dual loops
are processed (i.e., O is empty). After all the bridge structures are

constructed, we generate dual-defect nets by reconstructing all the loops
in bridge structures, where all the nets should be connected in the
following routing stage. Note that no duplicate nets will be generated.

Figure 6 shows an example of performing iterative bridging on the
circuit in Figure 1(b). First, l1 is selected as initial bridge structure b,
and the chain set of l1 is {p′11 –p′12 , p′21 –p′22 , p′41 –p′42 }. Because l2 and l3
respectively share one common module (m′2) and two common modules
(m′2 and m′4) with l1, they are pushed into the max-priority queue Q
with keys 1 and 2 respectively. Then, extracting l3 from Q, we construct
the bridge graph Gb,l3 for b and l3 as shown in Figure 6(b) to check
if l3 can be merged to b. For vertex construction, because m′2 and
m′4 are common modules between b and l3, thus v21 , v22 , v41 , and v42
are constructed. For edge construction, because v21 and v41 are vertices
deriving from endpoint pins of different chains within l1, e(v21 , v

4
1)

is constructed. Similarly, e(v21 , v
4
2), e(v22 , v

4
1), and e(v22 , v

4
2) are also

constructed. Besides, e(v21 , v22) is constructed since v21 and v22 are two
consecutive pins in a chain, and similarly, e(v41 , v

4
2) is constructed as

well. Now, suppose that the connecting order is 〈v22 , v21 , v42 , v41〉, a valid
path for continuous common segment is shown in Figure 4(b). We can
see that after bridging b and l3 with the continuous common segment,
the reconstructability of the loops in b is not destroyed because both l1
and l3 can be restored to a single loop by connecting all chains in the
chain set, as shown in Figure 6(c). Furthermore, after l3 is merged to b,
the chain set of l1 is updated to {p′41 –p′42 –p′21 –p′22 , p′11 –p′12 }, and that of
l3 is {p′41 –p′42 –p′21 –p′22 , p′51 –p′52 }. Repeating the above steps for merging
l2 to b, the bridge graph Gb,l2 is constructed, as shown in Figure 6(d).
Note that v42 is constructed because p′42 is the common endpoint of the
two chains belonging to l1 and l3. Finally, eight dual-defect nets are
generated by reconstructing all the loops in b, as shown in Figure 6(e).
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Fig. 6. An example of performing iterative bridging on the TQEC circuit
in Figure 1(b). (a) The initial bridge structure b. (b) The bridge graph
Gb,l3 . (c) The resulting bridge structure after adding l3. (d) The bridge
graph Gb,l2 . (e) The resulting bridge structure after adding l2.

C. Module Placement
In the placement stage, we need to place all the modules in 3D

space with the optimization of total wirelength and routability while
considering time-ordered measurements and state distillation boxes for
universal computations. In this work, we use the optimized distillation
boxes obtained in [9], where the volume of a |Y 〉 box is 18 (3×3×2) and
that of an |A〉 box is 192 (16×6×2). |Y 〉 and |A〉 state distillation boxes
are regarded as modules and should be placed as well. First, we cluster
some modules into a super-module for state injections and time-ordered
measurements. Next, we perform 2.5D placement while considering
wirelength, routability, and time-ordered measurement constraints. The
two major steps in this stage are detailed as follows.



1) Module Clustering: Both time-ordered measurements and distil-
lation boxes for state injections should be placed in certain ordering along
the time axis. Therefore, we propose module clustering to handle the
time-ordered measurement issue and the integration of state distillation
boxes. There are two types of super-modules: time-dependent super-
module and distillation-injection super-module. We detail each type of
super-modules below.
• Time-dependent super-module: The T gate measurements in the

ICM representation should be performed in a specific time ordering,
as mentioned in Section II-B. Therefore, we cluster the modules
associated with the five measurements of a T gate into a time-
dependent super-module. To meet the time-ordered constraint of T
gate measurements, the module associated with the first Z-basis
measurement must be placed on the left side of the four modules
associated with the four selective teleportation measurements of the
T gate. Besides, the four modules are placed vertically and aligned
by their right boundaries. Figure 7(a) shows an example of the
time-dependent super-module for a T gate, where the module on
the left is associated with the first Z-basis measurement, and the
four modules on the right are associated with the four selective
teleportation measurements of the T gate.

• Distillation-injection super-module: Ancillary states |Y 〉 or |A〉
should be prepared before injected into the circuit. Although a
state distillation box can be placed at any position ahead of the
injected module in the time axis, we cluster a state distillation box
and its injected module into a distillation-injection super-module
by directly connecting them to reduce the required primal-defect
routing resource between them and meet the distillation-injection
constraint. Figure 7(b) shows a |Y 〉 state distillation-injection super-
module, and Figure 7(c) shows an |A〉 state distillation-injection
super-module.

(a) (b) (c)
Primal defect
Dual defectI/M

| ⟩𝑌 state distillation box 
| ⟩𝐴 state distillation box 

Fig. 7. Examples of super-modules. (a) A time-dependent super-module.
(b) A |Y 〉 state distillation-injection super-module. (b) An |A〉 state
distillation-injection super-module.

2) 2.5D Placement: Instead of general 3D architectures, we pro-
pose to place all modules in a 2.5D architecture for its higher regularity,
which can benefit the routability. For a 2.5D architecture, modules are
divided into different tiers, where the modules in each tier are placed in
a 2D plane. All tiers are stacked up to form a 2.5D architecture in the
3D space. We use the 2.5D B*-tree representation [13] for the modules,
and the placement of each tier is represented by a 2D B*-tree [14],
where each node in the tree represents a module. For example, Figure 8
shows an example of a three-tier 2.5D B*-tree representation and the
corresponding B*-tree of each tier. A simulated annealing (SA) engine
is applied to minimize the total volume and total estimated wirelength.
Similar to [13], we apply four perturbations of the 2.5D B*-tree to
explore the solution space, including inter-/intra-tree node swap and
inter-/intra-tree node move. Furthermore, to enhance the routability, each
module is slightly expanded to preserve some routing region around the
module.

The selective teleportation measurements among the T gates operating
on the same qubit should obey a relative time ordering, as mentioned

Time

Tier 2

Tier 1

Tier 3

Module
B*-tree node

Fig. 8. An example of a 2.5D B*-tree representation with three tiers and
the corresponding B*-tree for each tier.

in Section II-B. To maintain the ordering during the SA process, we
create a time-dependent super-module list (TSL) for each qubit. The
time-dependent super-modules associated with the T gates operating on
the same qubit are added to a TSL. Before the SA engine is applied, the
super-modules in a TSL are resized to the same size. After a perturbation
operation is performed on the 2.5D B*-tree, the positions of time-
dependent super-modules would be identified. According to their relative
time ordering, the time-dependent modules in a TSL will be reallocated to
the identified positions. By the reallocation, the order of T gates in a TSL
is maintained after a perturbation operation. Besides, the reallocation
does not affect the positions of other modules since the super-modules
in a TSL are resized to an identical size.

D. Dual-defect Net Routing

In the routing stage, we should route all the nets to restore the dual
loops. First, all the nets are routed sequentially in the non-decreasing
order sorted by the Manhattan distance of each net, and the A* search
algorithm is applied to route each net within a restricted search region.
Besides, the negotiation-based rip-up and reroute technique [15] is
adopted to alleviate routing congestion, which is a common technique
used in electronic design automation (EDA). Moreover, if a net fails to
be routed, the net search region will be slightly expanded in the next
iteration to explore more routable regions.

Next, we introduce the concept of the friend net. If two nets share the
same pin, then they are defined as a friend net to each other with respect
to the pin. Once net ni is routed, the friend nets of ni with respect to
one of ni’s pin p can end on any point of the routed path of ni instead
of p. This rule is a kind of topological deformation that does not change
the braiding relationship and thus is valid. Figure 9(a) shows an example
that n1 and n2 are friend nets with respect to pin p. Therefore, after n1

is routed, as shown in Figure 9(b), the unrouted net n2 can end on any
point of the routed path of n1 instead of p, as shown in Figure 9(c).
The friend net-awareness routing can indeed reduce the required routing
resource and also enhance the routability.

Dual defectPrimal defect
(b)

𝑛!
𝑛" 𝑛#

𝑛$
(c)
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𝑛"

𝑛#

𝑛$

Routed net
(a)

𝑛!
𝑛" 𝑛#

𝑛$

Unrouted net

𝑝 𝑝 𝑝

Fig. 9. The concept of the friend net. (a) All nets are unrouted. (b) n1

is routed. (c) n2 can end on any point of n1 because they share the pin.



TABLE I
BENCHMARK STATISTICS.

Benchmark #Qubits #CNOTs #|Y 〉 #|A〉 #Modules #Nets
4gt10-v1 81 131 168 42 21 362 483
4gt4-v0 73 257 341 84 42 724 978
rd84 142 897 1162 294 147 2500 3339
hwb5 53 1307 1729 434 217 3687 4982
add16 174 1394 1792 448 224 3857 5167
sym6 145 1519 1980 504 252 4255 5688
cycle17 3 112 1911 2478 630 315 5321 7119
ham15 107 3753 4938 1246 623 10560 14215

TABLE II
COMPARISON OF SPACE-TIME VOLUME FOR THE STATE-OF-THE-ART WORK [11] AND OURS.

Benchmark Canonical [11] (1D) [11] (2D) Ours
Volume Ratio Volume Ratio Volume Ratio Volume Ratio Runtime (s)

4gt10-v1 81 136836 5.362 98322 3.853 91116 3.570 25520 1.000 15
4gt4-v0 73 535398 9.122 361152 6.153 327816 5.585 58696 1.000 26
rd84 142 6287400 13.927 2805246 6.214 2744316 6.079 451440 1.000 262
hwb5 53 13608294 10.143 9114828 6.793 8203548 6.114 1341704 1.000 447
add16 174 15028608 14.054 6449532 6.031 6173928 5.773 1069362 1.000 590
sym6 145 18103176 9.181 1072836 5.437 9852336 4.997 1971840 1.000 793
cycle17 3 112 28469700 12.094 19082448 8.106 16843884 7.155 2354100 1.000 1402
ham15 107 111335928 15.186 69294822 9.452 63017484 8.595 7331454 1.000 4901
Avg. Ratio 11.133 6.505 5.984 1.000

IV. EXPERIMENTAL RESULTS

We implemented our algorithm in the C++ programming language
with the Lemon graph library [16] and the Boost C++ libraries [17].
All experiments were performed on a Linux workstation with 4 Xeon
3.4 GHz CPUs with 64 GB memory. The experiments were conducted
on the RevLib benchmarks [18], where the benchmark statistics is
summarized in Table I. “#Qubits”, “#CNOTs”, “#|Y 〉”, and “#|A〉”
denote the numbers of qubits, CNOT gates, |Y 〉 ancillas, and |A〉 ancillas,
respectively, after gate decomposition. “#Modules” and “#Nets” denote
the numbers of modules and nets respectively after modularization and
iterative bridging.

The space-time volume comparisons of our proposed algorithm and
the state-of-the-art method [11] are summarized in Table II. Because
both of the canonical forms of TQEC circuits and the work [11] do
not consider the placement of state distillation boxes, the volumes of
them shown in Table II are calculated by the volumes of the synthesized
TQEC circuits directly plus the total volume of state distillation boxes
for a fair comparison. Besides, the work [11] proposes 1D and 2D qubit
arrangements, and the results of both arrangements are also reported in
Table II, where 2D qubit arrangements result in less space-time volumes
than 1D ones. Our proposed algorithm can averagely achieve 91.0%
volume reduction from the canonical forms while the work [11] can
only achieve 46.3% reduction, which justifies the effectiveness of our
compression technique.

V. CONCLUSION

In this paper, we have presented an effective algorithm that optimizes
space-time volumes of TQEC circuits while considering time-ordered
measurement constraints and the integration of state distillation boxes.
We have proposed an iterative bridging technique that efficiently con-
structs bridge structures for dual-defect loops. Under the placement-
and-routing framework, we have developed a time-ordering-aware 2.5D
placement method that simultaneously optimizes the circuit volume
and meets the time-ordered measurement constraints, and we have also
proposed the friend net-aware dual-defect net routing that can improve
the routability under topological deformation. Experimental results have
shown that our proposed algorithm can compress much more space-time
volume of TQEC circuits than state-of-the-art work.
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