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Abstract—Due to its effect on the success rate of a quantum circuit,
quantum layout synthesis is a crucial step for circuit compilation. As such,
having a layout synthesis tool that provides high solution quality is important
to maximize circuit performance and fidelity for NISQ application. Previous
heuristic approaches have been shown to be far from optimal when evaluated
on known-optimal benchmarks. Alternatively, exact layout synthesis tools can
generate optimal results with the aid of constraint solvers but generally
suffer from scalability issues because of inefficient encodings and slow
optimization methods. In this paper, we propose a scalable optimal layout
synthesis tool that improves upon previous works, through a more succinct
problem formulation as well as better encoding techniques. Additionally,
we implement a depth and SWAP count optimization feature that performs
iterative refinement under a fixed time budget. Experimental results show
that for depth optimization, our tool can achieve a 692× speedup over the
state-of-the-art optimal layout synthesis, and for SWAP optimization, we
can obtain a 6,957× speedup on average. Compared to a leading heuristic-
based synthesizer, for depth optimization, we can solve circuits consisting
of 54 program qubits and 1726 gates within 11 hours with an 18× depth
reduction and by 12× SWAP count reduction on average.

I. INTRODUCTION

Quantum computing has increasingly been attracting more research interest
due to its potential to achieve an exponential speedup over classical com-
puting with a variety of problems such as factorization [1] and unstructured
search [2]. Currently in the noisy intermediate-scale quantum (NISQ) era of
quantum hardware development, executable programs are limited to small
problem sizes (around one hundred qubits [3], [4]) and program outputs are
extremely sensitive to system noise. A quantum computer can be realized
using a variety of qubits [5], [6], [7]. The superconducting qubit is currently
the most mature approach and appears promising for large-scale quantum
computing. Different superconducting quantum computers support different
quantum gate sets and qubit connectivity, so in order to execute a quantum
program, we need to perform logic and layout synthesis to accommodate
these hardware specifications. First, logic synthesis will translate gates in
the circuit into those supported by the hardware. Then, layout synthesis
will perform gate scheduling and placement while adapting to the hardware
connectivity by inserting additional SWAP gates. In the NISQ era, the
success rate of quantum programs suffers from short qubit coherence time,
imperfect gate operations, and environmental noises. Thus, an effective layout
synthesizer should minimize the number of inserted SWAP gates to avoid
reducing the success rate via a prolonging of the circuit execution time, i.e.,
circuit depth, and an increase of the total gate count.

Layout synthesis has been proven to be NP-hard [8], [9]. Many heuristic
approaches have been proposed to perform layout synthesis. Most works
focus on minimizing the number of SWAP insertion. In [10], Zulehner
et al. offer a depth-based partitioning and an A* search algorithm whose
cost function is calculated based on qubit distance and SWAP gate count.
However, this greedy partition algorithm may lead to a sub-optimal solution.
In [11], Li et al. suggest an iterative SWAP selection method with a cost
function parameterized only on local gate information, and thus may sacrifice
global optimality. Other works [12], [13], [14], [15] have been shown to be
far from optimal by [8].

Several exact approaches have been introduced to obtain optimal results in
terms of SWAP insertion count by formulating layout synthesis as a constraint
satisfaction problem. Wille et al. [16], [17] leverage a pseudo-Boolean
optimizer and a satisfiability modulo theories (SMT) solver to minimize
additional SWAP gate cost. Siraichi et al. [9] perform gate-by-gate processing
and apply dynamic programming to solve the problem. Bhattacharjee et
al. [18] and Nannicini et al. [19] both utilize a linear programming approach
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(a) OLSQ. (b) Ours.

Fig. 1: Impact of coupling graph grid size and circuit gate count on SMT
solving time using Z3 for the OLSQ layout synthesizer versus ours.

on layer-by-layer basis. Molavi et al. [20] encode layout synthesis to
maximum satisfiability [21] and propose a constraint relaxation method
by slicing a circuit into layers and solving them individually to improve
scalability. However, Tan and Cong [22], [23] demonstrate that these gate-
by-gate and layer-by-layer methods impose unnecessary constraints, and thus
may lead to sub-optimality. To overcome this issue, they propose the state-
of-the-art optimal layout synthesis tool, OLSQ, which constructs a gate-
dependency graph and guarantee optimality for either depth or SWAP count
objectives via an SMT solver. However, our analysis shows their method
suffers from having redundant variables, a sub-optimal problem encoding, and
a slow optimization module, leaving a large amount of untapped potential in
the SMT solver. Fig. 1a illustrates the impact of the layout synthesis problem
size on the SMT solving time (excluding optimization) for models generated
by OLSQ. These SMT instances encode QAOA [24] applications with gate
count ranging from 15 to 36 and a grid-based coupling graph varying from
5-by-5 to 9-by-9. According to Fig. 1a, compiling a 36-gate circuit on a 9-
by-9 grid architecture using OLSQ’s formulation takes more than 40 hours.
Although testing a 9-by-9 grid architecture was sufficient at the time of OLSQ
development, the leading superconducting quantum processors today have
more than one hundred physical qubits, e.g., IBM Eagle has 127 qubits [4].
In addition, as qubit coherence time increases and gate fidelity improves, we
can execute circuits with larger gate counts. Therefore, developing a scalable
optimal layout synthesis tool is of urgent need.

To overcome the aforementioned problems in OLSQ, we develop a scalable
optimal layout synthesizer based on a more succinct SMT formulation along
with a more efficient encoding method. Fig. 1b demonstrates that our tool
can vastly improve time-to-solution compared to OLSQ and appears to scale
into the near-term future. For the cases that take more than 40 hours with the
models generated by OLSQ, our models take less than 10 minutes to solve.
On average, our tool achieves a 387× speedup over OLSQ. In addition, our
SWAP optimization method is designed to first obtain any valid solution and
then perform an iterative refinement until an optimal solution is reached or
a time budget is exhausted. The main contributions of this paper are:

• We present a succinct SMT formulation along with an efficient bit-
vector SMT encoding for quantum layout synthesis.

• We propose a depth and SWAP optimization feature that iteratively
refines a solution within a specified time budget.

• Our new formulation can achieve up to a 692× speedup over the leading
optimal layout synthesis, OLSQ, for depth optimization, and an average
of 6,957× speedup for SWAP optimization.

• Our tool demonstrates an average of 7× for depth reduction and an
average of 12× for SWAP reduction compared to the leading heuristic
layout synthesizer.
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Fig. 2: A circuit implementing the Toffoli gate with one ancilla qubit.

II. BACKGROUND

In this section, we first define the quantum layout synthesis problem, then
introduce constraint solving techniques to facilitate SMT solving, and lastly,
present the leading optimal layout synthesis tool, OLSQ.

A. Quantum Layout Synthesis

Quantum layout synthesis, or qubit mapping, is the process of mapping
program qubits in a circuit to physical qubits on a quantum processor,
followed by scheduling gate execution. First, we define terminology for the
inputs:

• Quantum program: a sequence of gates G and their target program
qubits. Since quantum processors only support one- or two-qubit gates,
the gates to be scheduled are one of these two types. In this paper,
we denote the set of program qubits by Q, the set of single-qubit
gates by G1, and the set of two-qubit gates by G2. Fig. 2 shows an
example quantum circuit implementing the Toffoli gate [25], where each
horizontal wire represents one program, or logical, qubit. H, T, and T†

gates are single-qubit gates, and CNOT gates are two-qubit gates.
• Coupling graph: a graph (P,E), where each vertex p ∈ P is a physical

qubit and each edge e ∈ E is a connection between two qubits that
captures the connectivity of a quantum processor. In this paper, we
sometimes refer to an edge between qubits p and p′ as e(p, p′). We
will also occasionally access its qubits via e.p and e.p′. Fig. 3 shows
the coupling graph of IBM QX2, which consists of five physical qubits
p0, p1, . . . , p4 and six edges e0, e1, . . . , e5.

The outputs of the layout synthesizer consist of a set of mapping {πt
q |

q ∈ Q, 0 ≤ t < T}, where t is a circuit time step and T is the circuit depth,
and a schedule S = {tg | g ∈ G}, where tg is the execution time step for
gate g. Fig. 4 exhibits a valid layout synthesis result for the Tofolli circuit
on IBM QX2 with 19 time steps and two inserted SWAP gates. Each SWAP
gate is decomposed to three CNOT gates marked by the dotted rectangle.
The qubit mapping is depicted above each wire at the start of the circuit
and after each SWAP insertion. For instance, q0 is initially mapped to p2,
i.e., π0

0 = p2, and then updated to π9
0 = p3 after the first SWAP gate. As

mentioned previously, in order to achieve a high success rate, the objective
for the layout synthesis is to minimize the circuit execution time, i.e., circuit
depth, and the number of inserted SWAP gates.

A valid layout synthesis result requires a valid qubit mapping and gate
schedule that satisfies the following constraints:

1) Mapping injectivity: Two program qubits cannot be mapped to the
same physical qubit at every time step, i.e., πt

q ̸= πt
q′ if q ̸= q′.

2) Gate dependency: If two gates g and g′ act on the same program qubit
and g appears before g′ in G, then g should be executed before g′. For
instance, in the Toffoli circuit (Fig. 2), g3 should be executed before
g5 on q2. According to the input circuit, we can build the dependency
gate list D that consists of pairs of gates (g, g′) where g should be
executed before g′. Fig. 5 shows the gate dependencies extracted from
the Tofolli circuit.

3) Valid two-qubit gate scheduling: Every two-qubit gate is scheduled on
two adjacent physical qubits in the coupling graph. In Fig. 4, g7 can
be executed at time t = 5 because π5

0 = p2 and π5
3 = p0 are adjacent

physical qubits in Fig. 3.
4) SWAP transformation: If a two-qubit gate acts on non-adjacent physical

qubits, the synthesizer will modify the mapping by inserting SWAP
gates so that the involved logical qubits are physically adjacent. For
example, in Fig. 4, g8 cannot be executed at time 6 because π6

1 = p3
and π6

3 = p0 are non-adjacent physical qubits. After the first SWAP
gate finishes, π9

0 and π9
1 are mapped to adjancent physical qubits p3

and p2, and thus g8 can be scheduled at time 9. On the other hand,
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Fig. 3: Coupling graph of IBM QX2

𝑡 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

𝑞!

𝑞"

𝑞#

𝑞$

H T

T

T

𝑔!

𝑔"

𝑔#

𝑔$

𝑔%

𝑔& 𝑔'

𝑔( 𝑔)

T

T†

T†
𝑔*

𝑔"!

𝑔""
T†
𝑔"# 𝑔"$

𝑔"&

𝑔"%

𝑔"(

𝑔"'
H
𝑔")

𝑝#

𝑝$

𝑝%

𝑝!

𝑝$

𝑝#

𝑝%

𝑝!

𝑝#

𝑝$

𝑝%

𝑝!

15 16 17 18

Block 0 Block 1 Block 2

Fig. 4: Transition-based layout synthesis result for Toffoli circuit.

if no SWAP gate is inserted, the mapping should be the same, e.g.,
π0
0 = π1

0 .
5) Valid SWAP insertion: A SWAP insertion is valid if it does not overlap

with other gates. For instance, in Fig. 4, g8 cannot be executed until
the SWAP gate is finished at t = 8.

B. Constraint Solving

Many real-world problems can be formulated as a SAT problem and
solved using a SAT solver. However, the performance of modern SAT solvers
typically is heavily affected by the method of the encoding itself [26], [27].
Satisfiability modulo theories (SMT) augments SAT by enabling various
logical domains, or theories, that extend beyond Boolean logic, such as
the domains of equality and uninterpreted functions (EUF) and arithmetic.
While this does allow for a higher-level and more expressive formulation,
it also offers different means of encoding a problem, and similarly to
SAT, the performance of SMT solvers is linked to the effectiveness of the
encoding method. For example, Bjørner et al. [28] demonstrates a significant
performance improvement for a finite domain combinatorial problem by
switching to a bit-vector encoding from an arithmetic one. In this case, the use
of fixed-sized bit-vectors encodes the finite domain problem more narrowly
than integer arithmetic and also enables specialized solving operations such
as bit-blasting.

C. OLSQ and TB-OLSQ

OLSQ is an optimal quantum layout synthesizer proposed by Tan and
Cong [22]. It encodes the layout synthesis problem to SMT and applies the
Z3 SMT solver [29] to solve the model. Given a quantum circuit and coupling
graph, OLSQ defines mapping variables to capture qubit mapping constraints,
space-time coordinate variables for gate scheduling, and SWAP variables for
enabling SWAP insertions along edges. The SWAP variables are encoded
as Boolean while all other variables are encoded as integers. To ensure
valid layout synthesis results, its formulation includes constraints (1)–(5) as
previously described in Section II-A. Following this problem formulation,
OLSQ applies Z3’s optimization module to perform either SWAP or depth
optimization. To address concerns with scalability, Tan and Cong propose
a transition-based version of OLSQ, called TB-OLSQ, which produces a
near-optimal solution for SWAP minimization. TB-OLSQ augments OLSQ
by introducing a coarse-grained approach that schedules gates into blocks
between mapping transitions rather than individually, and there is no SWAP
gate inside a block. For example, Fig. 4 demonstrates a circuit with three
blocks and two layers of SWAP gates.

III. OLSQ2 ALGORITHM

In this section, we present OLSQ2, an optimal layout synthesizer that is
not only based on OLSQ [22] but also our strategies for depth optimization
and SWAP optimization. Then, we discuss the different encoding schemes
in the SMT solver.

A. Improvement 1: Succinct Formulation

Our formulation is improved upon OLSQ by using fewer variables and
constraints and is presented in the following sections.
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Fig. 5: Longest gate dependency chain (red) for the Toffoli circuit.

1) Variable Definition: Since we need to define variables that account
for all time steps, we select an upper bound TUB for the circuit depth, which
can be trivially set to the total gate count. From our empirical results, we
found TUB = 1.5 × TLB to be a sufficient upper bound, where TLB is the
longest dependency chain in the gate dependency graph. For example, Fig. 5
shows the longest chain of length 12. Terminology for our variables is defined
as follows.

• Mapping variable πt
q = p if and only if program qubit q is mapped to

physical qubit p at time t.
• Time variable tg = t if and only if gate g is scheduled to execute at

time t.
• SWAP variable σt

e = 1 if and only if a SWAP gate is scheduled on
edge e and finishes at time t.

OLSQ also uses a space variable xg for each gate g to represent the
gate position and enforces valid two-qubit gate scheduling via constraints
containing space variables that represent the gate’s target qubit(s). However,
we conclude gate positions can be inferred from mapping variables and time
variables, so space variables are redundant. Moreover, using space variables
requires additional constraints for consistency checking between mapping,
time, and space variables. As a result, our first proposed improvement is to
eliminate space variables, thereby reducing the total number of variables by
|G| and the total number of constraints by (|E| − 1) · |G2| · T + |G1| · T . In
general, reducing the total number of variables in a problem formulation can
speed up the solving process as there is less work for a solver to perform.
In the following, we describe the constraints employed in our formulation
without using space variables.

2) Constraint Construction: After eliminating space variables, we need
to reformulate constraints (3) and (5) described in II-A.1

Valid Two-Qubit Gate Scheduling A valid gate schedule requires the
affected qubits of every two-qubit gate to be physically adjacent at execution
time. Therefore, we have:

(tg == t) =⇒
∨
e∈E

[((πt
q == e.p) ∧ (πt

q′ == e.p′)) ∨ ((πt
q′ == e.p)

∧ (πt
q == e.p′))] for every 0 ≤ t < TUB and g(q, q′) ∈ G2.

(1)

Note that the length of each individual constraint is increased, but the
experimental result shows it is well compensated by the reduction of variables
and constraints.

Valid SWAP Insertion Because OLSQ represents the gate position by space
variables, we need to rewrite the constraints that prevent SWAP gates from
overlapping with other gates. Since a SWAP gate may be a composition of
other gates, e.g., 3 CNOT gates, our formulation accounts for any arbitrary
swap depth SD . Additionally, while a SWAP is occurring, we must wait for
SD time steps before allowing other gates to be scheduled on the affected
qubits. Recall that, even though a SWAP gate’s execution time is defined
by its last time step t, it actually starts at time step t − SD + 1. Let Ep =

{e ∈ E | e contains p} and overlap(t, q, e) := (πt
q == e.p) ∨ (πt

q == e.p′)

describe the condition where the mapping of logical qubit q at time t is on an
endpoint of edge e. First, a SWAP gate should not overlap with single-qubit
gates:

[(tg == t′) ∧ overlap(t, q, e)] ⇒ (σt
e == 0)

for every SD ≤ t < TUB , t− SD < t′ ≤ t, g(q) ∈ G1 and e ∈ E.
(2)

Then, a SWAP gate should not overlap with two-qubit gates:
{(tg == t′) ∧ [overlap(t, q, e) ∨ overlap(t, q′, e)]} ⇒ (σt

e == 0)

for every SD ≤ t < TUB , t− SD < t′ ≤ t, g(q, q′) ∈ G2 and e ∈ E.
(3)

1Constraints (3) and (5) correspond to Eq. 3–4 and Eq. 7–8 in [22].

B. Improvement 2: Optimization Strategy
Using our formulation, we may choose to optimize circuit depth or SWAP

count. For our experiments, we found that the optimization module in Z3 [30]
was not very efficient for our problems. This led us to implement our own
optimization routine by iteratively updating an additional constraint that limits
the maximum value for either depth or SWAP count and checking for a
satisfying solution. In each iteration, if no solution exists under the current
bound, we relax the problem by increasing the bound; if a solution does
exist, we decrease it. The optimization process is terminated after we reach
the optimal value. Note that we are solving a set of similar models that only
differ in the bound of the optimization objective. Thus, we are able to make
use of incremental solving so that learned information [31] from the previous
iteration can be reused in later ones to reduce the amount of duplicated work.

1) Depth Optimization: To optimize circuit depth, we add the constraint:∧
g∈G

tg ≤ TB , (4)

where TB is the bound for depth and is initialized to TLB . During depth
optimization, the size of the solution space grows as the depth bound
increases. In order to initiate the optimization process from easier problems
with small solution spaces, we start from a tight depth bound. In addition,
according to our empirical results, the optimal depth is usually close to TLB .
Then, if the formulation is unsatisfiable, we increase TB to rTB with r > 1.
By default, we set r to 1.3 if TB is less than 100; otherwise, we set r

to 1.1. After we find the first satisfying assignment, we decrease TB by 1
iteratively until we get the unsatisfiable case. Then, the optimal depth is the
minimal value that can have a satisfiable assignment. If no solution exists
with TB < TUB , we regenerate a new formulation with a larger TUB .

2) Iterative Refinement for SWAP Optimization: To optimize the SWAP
count, we have the constraint: ∑

0≤t<TB
e∈E

σt
e ≤ SB , (5)

where SB is the bound for the SWAP count. Since increasing the depth bound
may reduce the SWAP count, we perform a two-dimensional search along the
depth and SWAP count to generate the Pareto-optimal solutions. The SWAP
optimization procedure begins with a depth-optimal solution as starting with a
tight depth bound trims the solution space, and thus, accelerates the solving
process. After obtaining the optimal SWAP count under the current depth
bound, we relax the depth bound and attempt to reduce the SWAP count
again. This process terminates under one of two conditions: (1) the time
budget is exhausted or (2) there is no reduction in the SWAP count after
increasing the depth bound. If the process is terminated by the second con-
dition, the solution is Pareto-optimal in terms of SWAP count under the given
depth.

Unlike the depth optimization strategy, we apply an iterative descent
approach for SWAP count optimization exploiting the monotone property
of the solution structure, because varying the SWAP bound will not change
the solution space but only affect the number of feasible assignments in the
solution space. That is, let ϕ be the set of satisfying assignments for the
model with SWAP bound S. For two SWAP bounds S and S′ with S < S′,
a satisfying assignment for S will also satisfy the model with SWAP bound
S′, i.e., ϕ ⊆ ϕ′. As a result, obtaining a satisfying assignment from the model
with S would be more difficult than that with S. Therefore, SB is initialized
to the upper bound SUB and lessened by one until reaching the optimal
value. Note that the upper bound SUB can alternatively be determined by
other heuristic layout synthesizers. In this manner, we can first obtain a valid
solution and then perform iterative descent refinement. The optimal SWAP
count under a certain depth T is known when the first unsatisfiable case
occurs, i.e., if we can find a satisfiable solution with SB = S at depth T but
none with SB = S − 1, then the optimal SWAP count for depth T is S.

C. Improvement 3: Exploration of Different Encoding Schemes
Because variable and constraint encoding has a big impact on solver

performance, in this section, we explore different encoding schemes for our
formulation. Depending on the chosen encoding, an SMT solver like Z3 can
invoke specialized theory solvers during the solving process, each of which
has its strength and weakness for certain problem domains. In the context of



our problem, we have the following choices for our variable types: integer,
bit-vector, and Boolean. Recall that we already use Boolean for SWAP
variables since this value is either 0 or 1. Because the ranges of our mapping
and time variables are bounded integers, we can encode them using either the
integer or bit-vector type; utilizing integers will trigger an arithmetic theory
solver while employing bit-vectors will lower the problem into propositional
logic (SAT) via a process called bit-blasting. Note that bit-vectors support
basic arithmetic operations, so changing the underlying encoding only affects
variable definitions and not their usage in constraints. As exhibited in our
experimental results in Section IV-A, using the SAT solver in Z3 is more
efficient than the arithmetic theory solver for our problems. Therefore, we
choose to encode each mapping variable and time variable by an unsigned
bit-vector of length ⌈log2 |P |⌉ and ⌈log2 (TUB − 1)⌉, respectively.

Constraints can also be encoded in different ways. For example, utilizing
the logic of equality and uninterpreted functions (EUF), we can avoid
generating pairwise constraints for mapping injectivity. More specifically,
to specify an injective function f , we can generate a set of constraints
{f(x) ̸= f(y) | x ̸= y}. Another approach is to define a left inverse
function g = f−1 and add the constraint g(f(x)) = x. To apply this idea
to our formulation, we redefine mapping variables to be a mapping function
π(q, t) = p. Then, we define another function πinv (p, t) and capture its
inverse property through the constraint πinv (π(q, t), t) = q for 0 ≤ t < TUB .
The results in Section IV-A reveal that using EUF to encode injectivity
can produce a better performance over employing pairwise constraints with
integer type variables.

Boolean cardinality constraints can also be encoded in different ways. As
an example, Eq. 5 is a Boolean cardinality constraint that specifies at most SB

Boolean variables can be True. In Z3, such a cardinality constraint can be
directly encoded by the AtMost function. However, if we encode Eq. 5 using
the AtMost function, Z3 will employ a pseudo-Boolean theory solver. This
solver finds an assignment that satisfies a collection of linear pseudo-Boolean
constraints, also known as integer linear programming. When comparing the
solving time for the formulation with and without the AtMost function, we
observed that the appearance of the AtMost function nullified all/some of
the performance gained from utilizing a bit-vector representation. We posit
that the pseudo-Boolean theory solver is not as efficient as the SAT solver.
As a result, our final encoding of Eq. 5 is a sequential counter circuit [32]
in the conjunctive normal form (CNF), so that we can trigger the SAT solver
to achieve the best performance.

D. Improvement 4: Use of Coarse-Grained Circuit Model

Inspired by TB-OLSQ, our work also includes TB-OLSQ2, a transition-
based version of OLSQ2. In TB-OLSQ2, the gate dependency constraints
need to be modified because two dependent gates can still be scheduled in
the same block. Furthermore, since the SWAP gates will be scheduled at
the end of a block and thus will not overlap with other gates, Eq. 2 and
Eq. 3 are removed. The objective of TB-OLSQ2 is to minimize either the
block count or the SWAP gate count and can be optimized by the same
strategies used in OLSQ2. When optimizing the block count, we adopt the
depth optimization strategy described above with TB initialized to 1. If
the formulation is unsatisfiable, TB will be increased by 1. For the SWAP
count optimization, the depth optimization step is changed to block count
optimization. Then, we can detect the optimal solution when either the first
unsatisfiable case occurs or, additionally, when SB is equal to the block count
because each transition contains at least one SWAP gate. With TB-OLSQ2,
we can obtain near-optimal results for the SWAP gate count.

IV. EXPERIMENTAL RESULTS

In this section, we present a comparison of different encoding strategies for
our problem and the layout synthesis results using OLSQ2 and TB-OLSQ2.
We implemented our proposed algorithm in Python 3.6 and used the Z3’s
Python API (v4.8.15.0) [29] for the SMT solving and pySAT (v0.1.7) [33] for
CNF generation. All experiments were conducted on an Intel Xeon E5-2680
CPU at 2.40GHz and 64 GB of RAM.

To measure the effectiveness of our encoding strategy, we design two
experiments. Section IV-A presents the speedup achieved from employing
the reduced SMT formulation and different variable encoding methods.
Section IV-B shows the advantage of utilizing CNF to encode cardinality

constraints. We use the QAOA [34] phase-splitting operator for random 3-
regular graphs generated by networkx (v2.4) [35] as our benchmark circuits
and various grid architectures for the coupling graphs. For QAOA circuits,
the SWAP duration is set to 1.

Then, to evaluate the solution quality and scalability of our approach,
we test our tool with coupling graphs from existing quantum devices and
NISQ quantum circuits; more specifically, those describing Rigetti’s Aspen-
4 processor with 16 qubits [36], Google’s Sycamore processor with 54
qubits [3], and IBM’s Eagle processor with 127 qubits [4]. We present
these results in Section IV-C. Our benchmark suite includes QAOA circuits,
arithmetic circuits from IBM Qiskit, and QUEKO circuits [8], which is
used for evaluating layout synthesizers. For non-QAOA circuits, the SWAP
duration is set to 3. We compare the performance of our tool against the
leading exact layout synthesizer, OLSQ [22] and the state-of-the-art heuristic
layout synthesizers, SABRE [11] and SATMap [20].

A. Comparing SMT Encodings

To measure the quality of each SMT encoding technique, we set up six
experiments:

1) OLSQ(int): original OLSQ formulation, which uses integer variables.
2) OLSQ(bv): OLSQ formulation with bit-vector variables.
3) OLSQ2(int): our proposed formulation with integer variables.
4) OLSQ2(EUF+int): our proposed formulation with EUF for mapping

constraints and integer time variables.
5) OLSQ2(EUF+bv): our proposed formulation with EUF for mapping

constraints and bit-vector time variables.
6) OLSQ2(bv): our proposed formulation with bit-vector variables.

For each method, we collect the Z3 solving time for the respective
instances generated by Solver.sexpr(). Each SMT instance encodes
the layout synthesis problem for a QAOA circuit on a 7-by-7 or 8-by-8
grid architecture with TUB fixed to 21 and without the constraint for the
SWAP count. This value for TUB is large enough to ensure that the generated
instances are all satisfiable.

Table I displays our runtime results. The speedup of each technique against
the baseline, OLSQ(int), can be seen in the “Ratio” column. Among the six
configurations, the performance of OLSQ(int) is consistently the worst. With
the bit-vector encoding, OLSQ(bv) can achieve up to a 32.90× speedup
and an average of a 18.87× speedup when compared to OLSQ(int). On the
other hand, OLSQ2(int) can outperform OLSQ(int) for all cases with a 3.59×
speedup on average, which is in accordance with our hypothesis that reducing
the variable count can facilitate the solving process. By using EUF to reduce
the number of constraints, OLSQ2(EUF+int) shows a 44.56× speedup on
average. Changing to bit-vector variables in OLSQ2(EUF+bv) reduces the
performance, which we hypothesize to be due to the presence of EUF
logic inhibiting the bit-vector engine, or vice versa. Although performance
degrades when employing bit-vector variables along with EUF, utilizing only
bit-vector variables for our proposed formulation demonstrates an impressive
runtime improvement: OLSQ2(bv) can achieve at least a hundred times
speedup on the smaller cases and can reach up to a 2327.41× speedup over
OLSQ(int) for larger cases with an average of 692× speedup. In conclusion,
our proposed formulation along with a bit-vector variable encoding reaps the
greatest boost in performance for our layout synthesis problems.

B. Comparing Cardinality Constraint Encodings

To quantify the benefit of using CNF to encode cardinality constraints, we
compare the runtimes of OLSQ, TB-OLSQ, OLSQ2 with AtMost, OLSQ2
with CNF, and TB-OLSQ2 with CNF. Here, we use the original implementa-
tion of OLSQ and TB-OLSQ. Similarly to the previous section, we measure
the Z3 solving time for the SMT instances generated by Solver.sexpr().
Each SMT instance encodes the layout synthesis problem for a QAOA circuit
on a 5-by-5 grid architecture with TUB fixed to 21 and SB fixed to 30. For
TB-OLSQ and TB-OLSQ2, setting the upper bound on block count to 5 is
sufficient to get satisfiable instances. 2

Our results are shown in Table II. First, we note that the OLSQ2(CNF)
encoding can solve all instances within the time limit while also providing

2Empirically, TUB for the transition-based model is four times smaller than
the non-transition-based model.



TABLE I: Runtime comparison for integer, bit-vector, and EUF formulations. The instances are layout synthesis problems for QAOA circuits on
grid architectures with a depth limit of 21 and with an unconstrained SWAP count. An entry “TO” indicates that the case cannot be solved within
the 24-hour time limit.

Grid Qubit/ OLSQ(int) OLSQ(bv) OLSQ2(int) OLSQ2(EUF+int) OLSQ2(EUF+bv) OLSQ2(bv)
Gate Runtime (s) Ratio Runtime (s) Ratio Runtime (s) Ratio Runtime (s) Ratio Runtime (s) Ratio Runtime (s) Ratio

7×7

16/24 4352.07 1.00 443.16 9.82 2219.11 1.96 215.58 20.19 840.00 5.18 16.76 259.67
18/27 13367.83 1.00 638.07 20.95 3729.63 3.58 320.38 41.72 2439.04 5.48 61.93 215.85
20/30 13004.06 1.00 974.71 13.34 5018.15 2.59 559.57 23.24 3718.45 3.50 29.66 438.44
22/33 27073.60 1.00 1404.28 19.28 7683.02 3.52 413.36 65.50 4307.89 6.28 40.15 674.31
24/36 69496.54 1.00 2112.46 32.90 17304.09 4.02 629.96 110.32 10090.08 6.89 29.86 2327.41

8×8

16/24 11879.47 1.00 1502.06 7.91 4098.26 2.90 532.28 22.32 2106.05 5.64 22.14 536.56
18/27 25830.72 1.00 1748.26 14.78 7857.68 3.29 1102.92 23.42 3825.52 6.75 34.60 746.55
20/30 84290.19 1.00 2634.05 32.00 12264.60 6.87 1694.44 49.75 5325.02 15.83 248.14 339.69
22/33 TO – 2867.26 – 21257.85 – 1647.89 – 15254.48 – 221.73 –
24/36 TO – 4829.89 – 28548.72 – 3063.81 – 17555.59 – 213.48 –

Avg. 1.00 18.87 3.59 44.56 6.94 692.31

a faster time-to-solution across the board. For the instances generated by
OLSQ, TB-OLSQ, and OLSQ2(AtMost), Z3 can only solve four out of
five cases within the time limit. Although OLSQ2(AtMost) can achieve a
6.40× speedup over OLSQ on average, it does not outperform OLSQ for
all cases. Because the AtMost function invokes a pseudo-Boolean solver,
we reason that the cost of not using a SAT solver sometimes outweighs the
benefit of eliminating space variables and employing bit-vectors. On the other
hand, OLSQ2(CNF) leverages the faster SAT engine, and thus achieves up
to a 20.86× speedup and an average of 11.71× speedup over OLSQ. With
the coarse-grained circuit model, our proposed formulation and encoding
demonstrate a significant runtime improvement. Overall, TB-OLSQ2 achieves
an average of 6,956.75× speedup over OLSQ and 149.98× speedup over TB-
OLSQ for SWAP optimization. In addition, we observe that the solving times
were less sensitive to the size of the problem.

C. Depth and SWAP Optimization
In this section, we evaluate the scalability and solution quality of OLSQ2

when optimizing depth or SWAP. First, we demonstrate that our tool is
more scalable than the leading exact layout synthesizer, OLSQ [22], by
compiling 22 quantum circuits with qubit counts ranging from 7 to 54, gate
counts ranging from 24 to 1726, and targeting the Rigetti Aspen-4, Google
Sycamore, and IBM Eagle. We summarize the results as follows: OLSQ only
managed to solve five cases within the time budget while OLSQ2 was able to
handle all cases and even outperformed OLSQ with up to a 157.48× speedup
and a 64.25× speedup on average for depth optimization.

Next, we demonstrate our solution quality in terms of depth compared to
that of SABRE [11]. Table III shows our results. On average, OLSQ2 can
reduce the circuit depth by 6.66×. For the same category of benchmark, the
solution quality of SABRE declines as the quantum processor size increases.
Using QAOA(16,24) as an example, SABRE reported 27 inserted SWAP
operations for the smaller Sycamore architecture, but 64 for the larger Eagle
architecture. We observe the same trend when compiling QUEKO circuits for
Aspen-4 and Sycamore processors. In addition, for QUEKO benchmarks, the
circuit depth of the results generated by OLSQ2 matches the known-optimal
depth, showing that OLSQ2 can generate depth-optimal results.

For SWAP optimization, we compare the solution quality of TB-OLSQ2
with those produced by SABRE and SATMap [20]. Table IV contains our
evaluation results. We observe that SATMap fails to produce a solution
for eight of our twenty experiments, either due to a timeout or out-of-
memory error. For the memory error, SATMap reaches the 64GB limit on
QAOA(20/30) after solving for 14 hours while TB-OLSQ2 uses less than only

5GB memory for the same problem. On average, TB-OLSQ2 can reduce the
SWAP count by 109.65× compared to SABRE and by 12.42× for SATMap.

V. CONCLUSION AND FUTURE DIRECTION
In this paper, we propose an efficient and optimal layout synthesis tool,

OLSQ2, that improves upon previous work through a more succinct problem
formulation and better encoding techniques. Moreover, we design a SWAP
count optimization feature with the ability to iteratively refine a solution under
a fixed time budget. To achieve better scalability, we also develop a near-
optimal layout synthesis tool, TB-OLSQ2, using a transition-based model.
Our experimental results show that our approach can achieve more than a
6,000× speedup over the state-of-the-art optimal layout synthesis tool and
exhibits higher solution quality with a 7× depth reduction and 12× SWAP
count reduction compared to leading heuristic solvers.

According to our observations, the solving time of OLSQ2 is affected by
both the type of coupling graph and the input circuit. For instances that do
not require many SWAP gates, e.g., QUEKO benchmarks, we can scale up
to a thousand gates and tens of qubits. However, for those requiring many
SWAP gates, e.g., QAOA circuits, TB-OLSQ2 cannot return a result within
the 24-hour limit for circuits with more than 40 program qubits. In the
future, we plan to explore different optimization techniques. One potential
strategy is to search neighboring solutions based on the current satisfiable
assignment. This strategy can be realized using an anytime MaxSAT solver
as in [20]. In addition, we aim to support parallel layout synthesis by solving
multiple instances simultaneously. Since each instance is independent of one
another, we can build a portfolio of instances by generating configurations
for a wide range of objective bounds. This could also include instances
containing different encoding methods for cardinality constraints, as there
does not appear to be a single best-in-class method with respect to solving
time. Another possible direction is to help guide the SAT solving process
using application-specific, heuristic algorithms. For example, our SAT solver
currently uses a generic variable ordering for the search process, but we
may be able to provide a better ordering based on our domain knowledge. In
conclusion, although we were able to demonstrate significant advantages over
several state-of-the-art layout synthesis tools in this paper, we believe that
there is still further room for improvement for the modern layout synthesis
tool and leave parallelization as one potential area for future exploration.

REFERENCES

[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer,” SIAM review, vol. 41, no. 2, pp. 303–
332, 1999.

TABLE II: Runtime comparison for using AtMost and CNF to encode cardinality constraints. Instances represent the layout synthesis problem
for QAOA circuits on grid architectures with a SWAP count limit of 30. The depth limit is 21 for OLSQ and OLSQ2 and 5 for TB-OLSQ and
TB-OLSQ2. An entry “TO” indicates that the case cannot be solved within the 24-hour time limit.

Grid Qubit/ OLSQ TB-OLSQ OLSQ2(AtMost) OLSQ2(CNF) TB-OLSQ2(CNF)
Gate Runtime (s) Ratio Runtime (s) Ratio Runtime (s) Ratio Runtime (s) Ratio Runtime (s) Ratio

5×5

16/24 1221.84 1.00 123.19 9.92 404.98 3.02 65.03 18.79 2.59 471.75
18/27 14665.26 1.00 90.47 162.10 944.71 15.52 703.20 20.86 2.73 5371.19
20/30 5353.61 1.00 276.23 19.38 8308.12 0.644 1493.32 3.59 3.08 1738.19
22/33 68833.65 1.00 1227.77 56.06 TO – 19037.63 3.62 3.40 20245.19
24/36 TO – 827.73 – 78555.91 – 10776.14 – 3.79 –

Avg. 1.00 61.87 6.40 11.71 6956.75



TABLE III: Depth optimization comparison between SABRE [11] and
OLSQ2. The name of the benchmark circuit is followed by the number of
program qubits and the gate number. For example, QFT(8/106) represents
the QFT circuit with 8 qubits and 106 gates.

Device Benchmark SABRE OLSQ2 Ratio

Sycamore

QFT(8/106) 120 70 1.71
tof 4(7,55) 80 58 1.38
barenco tof 4(7,72) 115 73 1.58
tof 5(9,75) 106 66 1.61
barenco tof 5(9,104) 120 66 1.82
QAOA(16/24) 27 9 3.00
QAOA(20/30) 34 10 3.40
QAOA(24/36) 33 10 3.30
QAOA(28/42) 49 11 4.45
QUEKO(54/192) 87 5 17.40
QUEKO(54/576) 208 15 13.87
QUEKO(54/959) 423 25 16.92
QUEKO(54/1342) 520 35 14.86
QUEKO(54/1726) 789 45 17.53

Aspen-4

QUEKO(16/37) 43 5 8.60
QUEKO(16/109) 73 15 4.87
QUEKO(16/180) 112 25 4.48
QUEKO(16/253) 157 35 4.49
QUEKO(16/324) 193 45 4.29

Eagle QAOA(16/24) 63 10 6.30
QAOA(20/30) 56 14 4.00

Avg. 6.66

TABLE IV: SWAP optimization comparison of SABRE [11],
SATMap [20], and TB-OLSQ2. If the result has no SWAP gate, we count
it as 1 when calculating the average ratio. An entry “OOM” indicates
that the case cannot be solved due to the run-out-of-memory issue, and
an entry “TO” indicates that the case cannot be solved within the timeout
limit of 86400 seconds, or 24 hours.

Device Benchmark SABRE SATMAP TB-OLSQ2

Sycamore

QFT(8/106) 30 20 9
tof 4(7,55) 24 1 1

barenco tof 4(7,72) 29 6 4
tof 5(9,75) 17 1 1

barenco tof 5(9,104) 24 8 6
ising 10(10,480) 33 9 0

QAOA(16/24) 37 15 5
QAOA(20/30) 59 OOM 7
QAOA(24/36) 69 TO 13
QAOA(28/42) 78 TO 18

QUEKO(54/192) 111 TO 0
QUEKO(54/576) 226 TO 0
QUEKO(54/959) 416 TO 0

QUEKO(54/1342) 460 TO 0
QUEKO(54/1726) 649 TO 0

Aspen-4

QUEKO(16/37) 17 0 0
QUEKO(16/109) 31 4 0
QUEKO(16/180) 44 19 0
QUEKO(16/253) 60 20 0
QUEKO(16/324) 65 45 0

Avg. Ratio 109.65 12.42 1.00

[2] L. K. Grover, “A fast quantum mechanical algorithm for database search,”
in Proceedings of the twenty-eighth annual ACM symposium on Theory of
Computing, 1996, pp. 212–219.

[3] F. Arute et al., “Quantum supremacy using a programmable superconducting
processor,” Nature, vol. 574, no. 7779, pp. 505–510, Oct. 2019.

[4] J. Chow, O. Dial, and J. Gambetta, “IBM quantum breaks the 100-qubit
processor barrier,” IBM Research Blog, 2021.

[5] C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Science,
vol. 339, no. 6124, pp. 1164–1169, 2013.

[6] D. Schrader et al., “Neutral atom quantum register,” Physical Review Letters,
vol. 93, no. 15, p. 150501, 2004.

[7] J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature, vol.
453, no. 7198, pp. 1031–1042, 2008.

[8] B. Tan and J. Cong, “Optimality study of existing quantum computing layout
synthesis tools,” IEEE Transactions on Computers, vol. 70, no. 9, pp. 1363–
1373, 2020.

[9] M. Y. Siraichi et al., “Qubit allocation,” in Proceedings of the 2018
International Symposium on Code Generation and Optimization, 2018, pp.

113–125.
[10] A. Zulehner and R. Wille, “Compiling SU(4) quantum circuits to IBM QX

architectures,” in Proceedings of the 24th Asia and South Pacific Design
Automation Conference, 2019, pp. 185–190.

[11] G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem for NISQ-
era quantum devices,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 1001–1014.

[12] A. Ho and D. Bacon, “Announcing Cirq: an open source framework for
NISQ algorithms,” Google AI Blog, vol. 18, 2018.

[13] A. Zulehner et al., “An efficient methodology for mapping quantum circuits
to the IBM QX architectures,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 38, no. 7, pp. 1226–1236,
2018.

[14] S. Sivarajah et al., “t|ket⟩: a retargetable compiler for NISQ devices,”
Quantum Science and Technology, vol. 6, no. 1, p. 014003, 2020.

[15] IBM. (2018) Qiskit. [Online]. Available: https://qiskit.org/
[16] R. Wille et al., “Optimal SWAP gate insertion for nearest neighbor quantum

circuits,” in 2014 19th Asia and South Pacific Design Automation Confer-
ence. IEEE, 2014, pp. 489–494.

[17] ——, “Mapping quantum circuits to IBM QX architectures using the
minimal number of swap and H operations,” in 2019 56th ACM/IEEE Design
Automation Conference. IEEE, 2019, pp. 1–6.

[18] D. Bhattacharjee et al., “MUQUT: Multi-constraint quantum circuit mapping
on NISQ computers,” in 2019 IEEE/ACM International Conference on
Computer-Aided Design. IEEE, 2019, pp. 1–7.

[19] G. Nannicini, L. S. Bishop, O. Günlük, and P. Jurcevic, “Optimal qubit
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