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ABSTRACT
Language equations are a powerful tool for compositional synthesis,

modeled as the unknown component problem. Given a (sequential)

system specification 𝑆 and a fixed component 𝐹 , we are asked to

synthesize an unknown component𝑋 such that whose composition

with 𝐹 fulfills 𝑆 . The synthesis of 𝑋 can be formulated with lan-

guage equation solving. Although prior work exploits partitioned

representation for effective finite automata manipulation, it remains

challenging to solve language equations involving a large number

of states. In this work, we propose variants of Boolean automata

as the underlying succinct representation for regular languages.

They admit logic circuit manipulation and extend the scalability

for solving language equations. Experimental results demonstrate

the superiority of our method to the state of the art in solving the

unknown component problem.

1 INTRODUCTION
Synthesis through composition is an effective design principle to

cope with the ever-increasing system complexity. Compositional

synthesis can be cast as the unknown component problem [19]: Given

a system specification 𝑆 and a pre-designed module 𝐹 , we are asked

to synthesize the unknown component 𝑋 such that composing 𝐹

and 𝑋 fulfills 𝑆 as illustrated in Figure 1.
1
This problem can be

formulated by the language equation:

𝐹 • 𝑋 ⊆ 𝑆, (1)

where • denotes some composition operation. In this work, we

focus on the most common synchronous composition [21], which

has practical applications in sequential circuit optimization as the

equation characterizes the notion of complete sequential flexibility

(CSF) of a sub-circuit to be simplified in a design.

According to [21], the solution to Eq. (1) can be derived by

𝑋 = [𝐹 (𝑖, 𝑜,𝑢, 𝑣) · (𝑆 (𝑖, 𝑜))↑𝑖,𝑜,𝑢,𝑣]↓𝑢,𝑣, (2)

where “·” denotes language intersection, the overline denotes lan-
guage complement, and “↑” and “↓” denote lifting and projection

operations, respectively, to be detailed later. Essentially, all the oper-

ations can be done through finite automata manipulation. However,

its computation difficulty stems from the requirement of comple-

menting a nondeterministic finite automata (NFA), which may incur

exponential increase in the state number due to the powerset con-

struction.

Unlike patching software errors, hardware design errors can

hardly be rectified. Therefore, circuit designers have been very con-

servative in adopting sequential circuit optimization in industrial

1
Note that the unknown component is not necessarily an embedded component. That

is, it can have its own inputs and outputs by making them as extra inputs and outputs

of the fixed components, respectively, such that these inputs feed directly to 𝑢 and

these outputs are directly driven by 𝑣.

𝐹

𝑆

𝑢 𝑣

𝑜𝑖

𝑋

Figure 1: Unknown 𝑋 under synthesis to be composed with
𝐹 to fulfill specification 𝑆 .

designs due to its high verification complexity. While most exist-

ing logic synthesis methods focus on combinational optimization,

only relatively few focus on sequential system optimization [18]. In

[13], binary decision diagrams (BDDs) are exploited to support NFA

manipulation for solving 𝑋 of Eq. (2). Recent work [1] proposes

flanked finite automata (FFA), which is a subset of NFA, to compute

quotient and inclusion of regular language efficiently. However,

some essential operations to solve Eq. (2) are not supported, e.g.,

lifting, projection, and input progressive operations.

The current state-of-the-art approach [13, 18] of language equa-

tion solving utilizes a partitioned BDD representation to alleviate

the memory blow-up problem of monolithic BDD representation.

However, the scalability is still limited. Hence, it remains vital to

develop scalable approaches to solving language Eq. (2) involv-

ing systems of large state spaces. As And-Inverter Graphs (AIGs)

[14] are scalable data structures widely applied in logic synthe-

sis and verification applications, they can be more scalable than

BDDs. Inspired by logic circuits representation of NFA for string

constraint solving [20], in this work we exploit logic circuits for

scalable language equation solving.

Moreover, inspired by [7] using Boolean automata (BA) [4] rep-

resentation in model checking for regular language constraints, in

this work we exploit BA to overcome the complement problem in

language equation solving. Essentially, BA offer more succinct rep-

resentation than NFA in supporting language manipulation due to

two characteristics. First, the one-hot state encoding of a BA allows

the subset of states being expressed. Second, the transition function

of a BA can encode not only existential, as in an NFA, but also uni-

versal nondeterminisms in a backward deterministic manner [5, 16].

Thereby, a BA can have exponentially fewer states than an NFA

in representing the same regular language [11, 12]. However, to

make BA suitable for language equation solving, we have to modify

and extend BA in two ways: First, we take advantage of reversed

BA (rBA), which accept the reversed language of BA, to allow a

sequential circuit representation for regular language manipula-

tion. Second, we propose reversed alternating Boolean automata

(rABA), which generalize rBA to accommodate nondeterministic
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universal or existential transitions. This extension is crucial to sup-

port nondeterminism arisen from the projection operation and to

avoid superset construction in complement operation. We further

show how language equation operations can be achieved with rBA

and rABA. As rBA and rABA can be represented with sequential

circuits, their manipulation can be done scalably. Experimental re-

sults show superior performance of the proposed method to the

prior approach. Unlike recent developments in language equation

solving that remain primarily theoretical [18], we addresses the

computation efficiency for practical applications.

The rest of this paper is organized as follows. Section 2 provides

the backgrounds of Boolean automata and language operations.

Section 3 defines the reversed Boolean automata and presents the

conversion between sequential circuits and rBA. Section 4 defines

the reversed alternating Boolean automata. Section 5 details lan-

guage equation solvingwith the proposed automata representations.

Section 6 shows the experimental results, and Section 7 concludes

this paper.

2 PRELIMINARIES
2.1 Finite Automata and Boolean Automata
A nondeterministic finite automaton [17]𝐴 is a 5-tuple (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ),
where 𝑄 is a finite set of states, Σ is the input alphabet, 𝛿 : 𝑄 ×
Σ → 2

𝑄
is the transition function, 𝑞0 ∈ 𝑄 is the initial state,

and 𝐹 ⊆ 𝑄 is the set of final states. A string �̂� = 𝜎1𝜎2 · · ·𝜎𝑘 , for
𝜎𝑖 ∈ Σ, is accepted by 𝐴 if 𝑄𝑖 = 𝛿 (𝑞𝑖−1, 𝜎𝑖 ) with 𝑞𝑖−1 ∈ 𝑄𝑖−1
(𝑄0 = {𝑞0}) and 𝑖 = 1, · · · , 𝑘 , and 𝑄𝑘 ∩ 𝐹 ≠ ∅. The set of strings
accepted by𝐴 is called the language of𝐴, denoted 𝐿(𝐴). A language

that can be accepted by some finite automata is recognized as a

regular language. In the sequel, the considered languages are regular
languages. Let 𝐴′

be an automaton with 𝐿(𝐴′) = 𝐿(𝐴), where
the overline denotes language complement. It is well known that

𝐴′
can be built from 𝐴 by the superset construction method, but

suffers from an exponential blow-up in the state set. To overcome

the complement problem, the variants, alternating finite automata
(AFA) [5] and Boolean automata (BA) [4], are proposed for succinct

regular language representation and manipulation.

A Boolean automaton [4] 𝐴 is a 5-tuple (𝑄, Σ, 𝛿, 𝑓 0, 𝐹 ), where
𝑄 = {𝑞1, 𝑞2, . . . , 𝑞𝑛} is the finite nonempty set of states, Σ is the

input alphabet, 𝛿 : 𝑄 × Σ → B𝑄 , for B𝑄 being the set of Boolean

functions {𝑓 (𝑞1, . . . , 𝑞𝑛)} over variables 𝑞1, . . . , 𝑞𝑛 (by abusing the

notation let variable 𝑞𝑖 = 1 indicate the presence of 𝑞𝑖 ), is the

transition function, 𝑓 0 is the initial function in B𝑄 , and 𝐹 ⊆ 𝑄

is the set of final states. Let 𝛿 be extended from domain 𝑄 × Σ to

domain B𝑄 × Σ∗ by defining

𝛿 (𝑓 , 𝜖) = 𝑓 ,

𝛿 (𝑓 , 𝑎) = 𝑓 (𝛿 (𝑞1, 𝑎), 𝛿 (𝑞2, 𝑎), . . . , 𝛿 (𝑞𝑛, 𝑎)),
𝛿 (𝑓 , 𝑎�̂�) = 𝛿 (𝛿 (𝑓 , 𝑎), �̂�),

for 𝑓 ∈ B𝑄 , 𝜖 denoting the empty string, 𝑎 ∈ Σ, and �̂� ∈ Σ∗. In
the sequel 𝑠0 denotes the vector (𝐹 (𝑞1), . . . , 𝐹 (𝑞𝑛)), for 𝐹 (𝑞𝑖 ) = 1 if

𝑞𝑖 ∈ 𝐹 and 𝐹 (𝑞𝑖 ) = 0 otherwise. A string �̂� ∈ Σ∗ is accepted by BA

𝐴 if 𝛿 (𝑓 0, �̂�) (𝑠0) = 1. Note that Boolean automata are backward

deterministic. The initial state values are defined by 𝑠0, the final state

set of the Boolean automaton. When an input sequence 𝜎1 . . . 𝜎𝑘
is read from the last input 𝜎𝑘 to the first input 𝜎1, every input 𝜎𝑖

Table 1: Transition table of example BA.

𝑎 𝑏

𝑞1 1 𝑞1
𝑞2 𝑞1 ∨ ¬𝑞2 1

uniquely determines the transition function 𝛿 (𝑞 𝑗 , 𝜎𝑖 ) for each state

variable 𝑞 𝑗 to update its value. After finishing reading inputs, the

acceptance of inputs is determined by evaluating the initial function

𝑓 0 with the current state values.

When AFA and BA are compared, we note that the former is a

BA with the initial function being restricted to a projection func-

tion, i.e., 𝑓 0 (𝑞1, . . . , 𝑞𝑛) = 𝑞𝑖 for some 𝑞𝑖 . On the other hand, when

NFA and BA are compared, unlike an NFA with only existential

nondeterministic transitions, a BA can encode both universal and

existential nondeterminisms. For an NFA, the transition function

maps a state and an input to a subset of states, which in the BA

notation corresponds to a disjunction of state variables. In contrast,

for a BA, the current state set can be expressed by any Boolean

function over the state variables. Hence, an NFA is a BA with only

disjunction in transition functions and the initial function being

the initial state. The generality of BA makes its state number expo-

nentially smaller than that of NFA representing the same regular

language [11, 12]. Essentially, converting an 𝑛-state BA (AFA) to

an equivalent deterministic finite automaton (DFA) and NFA in the

worst case requires 2
2
𝑛
and 2

𝑛 + 1 states, respectively [5, 8].

Example 1. Consider the BA𝐴 = (𝑄, Σ, 𝛿, 𝑓 0, 𝐹 ), with𝑄 = {𝑞1, 𝑞2},
Σ = {𝑎, 𝑏}, 𝛿 specified in Table 1, 𝑓 0 = 𝑞1 ∧ ¬𝑞2, and 𝐹 = ∅. Assume
we intend to determine whether input string 𝑎𝑏 is accepted.

To verify whether 𝐴 accepts 𝑎𝑏, we check if 𝛿 (𝑓 0, 𝑎𝑏) (𝑠0) = 1.
There are two strategies for the checking. We can read the input string
in a forward or backward manner. With forward reading, we check
𝛿 (𝑞1 ∧ ¬𝑞2, 𝑎𝑏) (𝑠0) by substituting state transition functions to the
initial function and evaluating the resulted function by 𝑠0. That is,

𝛿 (𝑞1 ∧ ¬𝑞2, 𝑎𝑏) (𝑠0)
= 𝛿 (𝛿 (𝑞1, 𝑎) ∧ ¬𝛿 (𝑞2, 𝑎), 𝑏) (𝑠0)
= 𝛿 (1 ∧ ¬(𝑞1 ∨ ¬𝑞2, 𝑏) (𝑠0)
= 𝛿 (¬𝑞1 ∧ 𝑞2, 𝑏) (𝑠0)
= 𝛿 (¬𝛿 (𝑞1, 𝑏) ∧ 𝛿 (𝑞1, 𝑏), 𝑏) (𝑠0)
= 𝛿 (¬𝑞1 ∧ 1) (00)
= 1,

which indicates 𝑎𝑏 is accepted.
On the other hand, with backward reading, we check 𝛿 (𝑞1 ∧

¬𝑞2, 𝑎𝑏) (𝑠0) by updating the state values and evaluating the initial
function by the resulted state values. That is,

(1) Initially, we have state value 𝑠0 = (0, 0).
(2) After reading 𝑏, we have 𝑠1 = (𝛿 (𝑞1, 𝑏) (𝑠0), 𝛿 (𝑞2, 𝑏) (𝑠0)) =

(0, 1).
(3) After reading 𝑎, we have 𝑠2 = (𝛿 (𝑞1, 𝑎) (𝑠1), 𝛿 (𝑞2, 𝑎) (𝑠1)) =

(1, 0).
(4) By evaluating 𝑓 0 with 𝑠2, we have 𝑓 0 = 1 ∧ ¬0 = 1.

According to the computation above, 𝐴 accepts string 𝑎𝑏.
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2.2 Language Operations
The language equation for the unknown component problem [19]

involves language operations, including complement, intersection,
lifting, projection, prefix-close, and input-progressive as we define
below.

2.2.1 Complement Operation. Given a regular language 𝐿 over an

alphabet Σ, the complement of 𝐿, denoted 𝐿, is

Complement(𝐿) = Σ∗ \ 𝐿.

2.2.2 Intersection Operation. Given regular languages 𝐿1 and 𝐿2,

the intersection language of 𝐿1 and 𝐿2, denoted 𝐿1 · 𝐿2, is
Intersection(𝐿1, 𝐿2) = 𝐿1 ∩ 𝐿2 .

2.2.3 Lifting Operation. Given a regular language 𝐿 over an alpha-

bet Σ and an alphabet Ξ, the lifting of language 𝐿 to Σ ×Ξ, denoted
𝐿↑(Σ,Ξ) , is

Lifting(𝐿, Σ,Ξ) =
{(𝜎1, 𝜉1) (𝜎2, 𝜉2) · · · (𝜎𝑘 , 𝜉𝑘 ) |𝜎1𝜎2 · · ·𝜎𝑘 ∈ 𝐿, 𝜉𝑖 ∈ Ξ}.

2.2.4 Projection Operation. Given a regular language 𝐿 over alpha-

bet Σ × Ξ, the projection of language 𝐿 to Ξ, denoted 𝐿↓Ξ, is

Projection(𝐿,Ξ) = {𝜉1𝜉2 · · · 𝜉𝑘 | (𝜎1, 𝜉1) (𝜎2, 𝜉2) · · · (𝜎𝑘 , 𝜉𝑘 ) ∈ 𝐿}.

2.2.5 Prefix-Close Operation. A regular language 𝐿 over Σ is called

prefix-closed if

∀�̂� ∈ 𝐿, Prefix(�̂�) ⊆ 𝐿,

where Prefix(�̂�) = {𝛼 ∈ Σ∗ | ∃ ˆ𝛽 ∈ Σ∗ such that 𝛼 ˆ𝛽 = �̂�}. Given a

regular language 𝐿, the largest prefix-closed sub-language of 𝐿 is

PrefixClose(𝐿) =
⋃

prefix-closed 𝐿′ ⊆ 𝐿

𝐿′.

2.2.6 Input-Progressive Operation. A regular language 𝐿 over al-

phabet Σ × Ξ is called Σ-progressive if, for any string 𝛼 ∈ 𝐿, the

concatenation 𝛼 (𝜎, 𝜉) is also in 𝐿 for every 𝜎 ∈ Σ and some 𝜉 ∈ Ξ.
Given a regular language 𝐿 over alphabet Σ × Ξ, the largest Σ-
progressive sub-language of 𝐿 is denoted Progressive(𝐿, Σ).

3 REVERSED BOOLEAN AUTOMATA AND
LOGIC CIRCUIT REPRESENTATION

Inspired by the bit-wise representation of reversed alternating fi-

nite automata (r-AFA) [16], for efficient logic circuit representa-

tion, we introduce reversed Boolean automata, which accept the

reversed languages of BA, as follows. A reversed Boolean automa-
ton (rBA) is a 5-tuple (𝑄, Σ, 𝛿, 𝑓 0, 𝐹 ), same as a BA except for the

following difference. For a state variable valuation 𝑠 ∈ B |𝑄 |
and

an input 𝑎 ∈ Σ, we extend the notation of 𝛿 and let 𝛿 (𝑠, 𝑎) denote
(𝛿 (𝑞1, 𝑎) (𝑠), ..., 𝛿 (𝑞𝑛, 𝑎) (𝑠)). For �̂� ∈ Σ∗, we have

𝛿 (𝑠, 𝜖) = 𝑠,

𝛿 (𝑠, �̂�𝑎) = 𝛿 (𝛿 (𝑠, �̂�), 𝑎).
Therefore, an rBA accepts a string �̂� if 𝑓 0 (𝛿 (𝑠0, �̂�)) = 1. Unlike a

BA that expresses the current state set by a Boolean function, an

𝑛-state rBA express the current state set by a bit-vector (𝑞1, . . . , 𝑞𝑛),
where 𝑞𝑖 = 1 (0) indicates that state 𝑞𝑖 is (not) in the current state

set. This bit-vector representation of the current state set naturally

input

𝑞!

…
…

…

…
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…
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Figure 2: (a) Sequential circuit representation of rBA. (b) Tran-
sition function circuit 𝛿𝑖Σ of state 𝑞𝑖 .

corresponds to a sequential circuit representation for efficient rBA

manipulation.

The logic circuit of an rBA is of the form shown in Figure 2.

The box labelled 𝛿𝑖Σ in Figure 2(a) denotes the transition function

for state 𝑞𝑖 under a given input, and its detailed realization with a

multiplexer for selection with respect to the input value is shown in

Figure 2(b). The box 𝑓 0 in Figure 2(a) implements the initial function

𝑓 0. The boxes labelled 𝑞1, . . . , 𝑞𝑛 are latches that store the current

state values and are updated according to the transition functions.

The latches are initialized to values 𝑠0. The circuit outputs 1 for

an input string if and only if the underlying rBA accepts the input

string.

In addition to the above rBA to sequential circuit conversion,

we may extract an rBA from a sequential circuit, not necessary

in the form of Figure 2, as follows. Consider a sequential circuit

𝐶 = (𝐼 ,𝑂, 𝐿, 𝐿𝐹 , 𝑓𝐿, 𝑓𝑂 ) with input alphabet 𝐼 = B | ®𝑥 | , i.e., the set of
valuations of the input variables ®𝑥 , output alphabet𝑂 , i.e., the set of

valuations of the output variables, the set of latches 𝐿 = {𝑙1, . . . , 𝑙𝑛},
the subset of latches 𝐿𝐹 ⊆ 𝐿 whose initial values are 1, the set of

transition functions 𝑓𝐿 = {𝑓𝑙1 , . . . , 𝑓𝑙𝑛 }, where 𝑓𝑙 𝑗 : 𝐼 → BL , for BL
being the set of Boolean functions over variables

®𝑙 = (𝑙1, . . . , 𝑙𝑛),
and the set of output functions 𝑓𝑂 = {𝑓𝑜1 , . . . , 𝑓𝑜𝑘 }, where 𝑓𝑜 𝑗

:

𝐼 → BL .2 We can construct an rBA 𝐴 = (𝑄, Σ, 𝛿, 𝑓 0, 𝐹 ) with Σ =

𝐼 × 𝑂 such that 𝐿(𝐴) describes the behavior of 𝐶 as follows. Let

𝑄 = 𝐿 ∪ {𝑞′} for 𝑞′ being a fresh new variable. Let 𝑞′ have value 1
after reading in string �̂� ∈ Σ∗ if and only if string �̂� is a valid input-

output sequence for𝐶 . Therefore, we set 𝑓 0 = 𝑞′ and 𝐹 = 𝐿𝐹 ∪ {𝑞′}.
For 𝑖 ∈ 𝐼 , 𝑜 ∈ 𝑂 , we define the transition function as

𝛿 (𝑞, (𝑖, 𝑜)) =


𝑞 ∧

∧
𝑗

(𝑜 [𝑜 𝑗 ] ≡ 𝑓𝑜 𝑗
(𝑖)), if 𝑞 = 𝑞′,

𝑓𝑙 𝑗 (𝑖), if 𝑞 = 𝑙 𝑗 ,

where 𝑜 [𝑜 𝑗 ] denotes the 𝑜 𝑗 -bit value in the output value vector

𝑜 . Then, the tuple of 𝐴 is (𝐿 ∪ {𝑞′}, 𝐼 × 𝑂, 𝛿, 𝑞′, 𝐿𝐹 ∪ {𝑞′}). Note
that given a sequential circuit with input alphabet 𝐼 , the language

2
Notice that the transition function 𝑓𝑙 𝑗 : 𝐿 × 𝐼 → B of latch 𝑙 𝑗 can be alternatively

viewed as a mapping from an input 𝑖 ∈ 𝐼 to the Boolean function 𝑓𝑙 𝑗 (®𝑙, ®𝑥) | ®𝑥=𝑖 , i.e.,
the function resulting from substituting ®𝑥 with 𝑖 in 𝑓𝑙 𝑗 (®𝑙, ®𝑥) . Similarly, the output

function 𝑓𝑜𝑗 : 𝐿 × 𝐼 → B can be alternatively viewed as a mapping from an input

𝑖 ∈ 𝐼 to a Boolean function 𝑓𝑜𝑗 (®𝑙, ®𝑥) | ®𝑥=𝑖 .
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that describes the behavior of the circuit is prefix-closed and 𝐼 -

progressive.

4 REVERSED ALTERNATING BOOLEAN
AUTOMATA

Motivated by the fact that certain language operations, such as

projection, may result in nondeterministic transitions, we general-

ize rBA to accommodate both existential and universal nondeter-

minisms. Thereby, its complement can be done without determiniza-

tion to circumvent the state-explosion problem. A reversed alter-
nating Boolean automaton (rABA) 𝐴 is a 7-tuple (𝑄, Σ, 𝛾,Δ, 𝛿, 𝑓 0, 𝐹 ),
where𝑄 is a finite set of states, Σ is the input alphabet, 𝛾 is the num-

ber of nondeterministic transitions for giving an input, Δ : Σ →
{∀, ∃} maps an input to a type of nondeterminism, 𝛿 is the tran-

sition relation with 𝛿 (𝑞, 𝑎) ∈ B𝛾

𝑄
, 𝑓 0 ∈ B𝑄 is the initial function,

and 𝐹 ⊆ 𝑄 is the final state set. If different inputs have different

numbers of nondeterministic transitions, we let the 𝛾 parameter

be the maximal number of nondeterministic transitions among all

𝑎 ∈ Σ, and padding 𝛿 (𝑞, 𝑎) with the last transition until the number

of the transitions is 𝛾 , ∀𝑞 ∈ 𝑄, 𝑎 ∈ Σ. Note that the 𝛾 parameter is

used to ensure that the number of nondeterministic state transitions

is the same over all states under different inputs.

For 𝑄 = {𝑞1, 𝑞2, ..., 𝑞𝑛}, 𝑠 ∈ B |𝑄 |
, and 𝛿 (𝑞𝑖 , 𝑎) = (𝑓𝑖,1, . . . , 𝑓𝑖,𝛾 ),

let 𝛿 (𝑠, 𝑎) = {(𝑓1,𝑖 (𝑠), . . . , 𝑓𝑛,𝑖 (𝑠)) | 𝑖 = 1, . . . , 𝛾}. We define how 𝐴

recognizes a pair of a state vector 𝑠 ∈ B |𝑄 |
and a string as follows.

First,𝐴 recognizes (𝑠, 𝜖) if 𝑓 0 (𝑠) = 1. Second, for 𝑎 ∈ Σ, �̂� ∈ Σ∗, and
Δ(𝑎) = ∀, 𝐴 recognizes (𝑠, 𝑎�̂�) if 𝐴 recognizes every (𝑠 ′, �̂�) where
𝑠 ′ ∈ 𝛿 (𝑠, 𝑎). Third, for 𝑎 ∈ Σ, �̂� ∈ Σ∗, and Δ(𝑎) = ∃, 𝐴 recognizes

(𝑠, 𝑎�̂�) if 𝐴 recognizes some (𝑠 ′, �̂�) where 𝑠 ′ ∈ 𝛿 (𝑠, 𝑎). Lastly, 𝐴
accepts �̂� if 𝐴 recognizes (𝑠0, �̂�).

By the above definition, the transitions of state vectors of𝐴 with

respect to an input sequence �̂� can be visualized as a tree 𝑇𝐴 (�̂�).
Each tree node is labeled with the current state vector, and the root

is labeled with 𝑠0. For string �̂� = 𝜎1𝜎2 . . . 𝜎𝑘 and a node 𝑠 at level

𝑖 , the children of 𝑠 are 𝛿 (𝑠, 𝜎𝑖 ). Let 𝑇𝐴 (�̂�) .nodes and 𝑇𝐴 (�̂�) .leaves
denote nodes and leaves of the tree, respectively. Considering string

�̂� , we define 𝑇𝐴 (�̂�) .accepted to be the set of nodes labeled with the

recognized state vectors. The node 𝑠 at level 𝑖 can be added to

𝑇𝐴 (�̂�).accepted if one of the following conditions is satisfied:

• 𝑠 ∈ 𝑇𝐴 (�̂�).leaves and 𝑓 0 (𝑠) = 1.

• For Δ(𝜎𝑖+1) = ∃, at least one child of 𝑠 is in 𝑇𝐴 (�̂�).accepted.
• For Δ(𝜎𝑖+1) = ∀, all children of 𝑠 are in 𝑇𝐴 (�̂�) .accepted.

�̂� ∈ 𝐿(𝐴) if and only if 𝑠0 ∈ 𝑇𝐴 (�̂�) .accepted. Note that the tree is a
complete 𝛾-ary tree whose depth is the length of the input string.

The following example illustrates how rABA works.

Example 2. Consider the rABA 𝐴 = (𝑄, Σ, 𝛾,Δ, 𝛿, 𝑓 0, 𝐹 ), with 𝑄 =

{𝑞1, 𝑞2}, Σ = {𝑎, 𝑏}, 𝛾 = 2, Δ(𝑎) = ∃,Δ(𝑏) = ∀, 𝛿 specified in Table 2,
𝑓 0 = 𝑞1 ∧ 𝑞2, and 𝐹 = ∅. Assume we intend to determine whether
string 𝑎𝑏 is accepted.

To verify whether 𝐴 accepts 𝑎𝑏, we check if 𝐴 recognizes (𝑠0, 𝑎𝑏) =
(00, 𝑎𝑏). First, we have 𝛿 (00, 𝑎) = 11|01, where “𝑠1 |𝑠2” denotes existen-
tial nondeterministic branching into state vectors 𝑠1 and 𝑠2. Then, we
check whether 𝐴 recognizes (11, 𝑏) or (01, 𝑏). Since 𝛿 (01, 𝑏) = 11&01,
where “𝑠1&𝑠2” denotes universal nondeterministic branching into state
vectors 𝑠1 and 𝑠2, and 𝑓 0 (0, 1) = 0, 𝐴 does not recognizes (01, 𝑏). For

Table 2: Transition table of example rABA.

𝑎 𝑏

𝑞1 (1, 𝑞1) (1, 𝑞1)
𝑞2 (𝑞1 ∨ ¬𝑞2, 1) (1, 1)
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Figure 3: Transition tree for example rABA under string 𝑎𝑏.
𝑇𝐴 (𝑎𝑏). The nodes 𝑠 ∈ 𝑇𝐴 (𝑎𝑏) .accepted are doubled circled.
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Figure 4: Circuit for nondeterministic Boolean function
choices of transition function 𝛿𝑖,𝑎 of state 𝑞𝑖 under input
𝑎.

𝛿 (11, 𝑏) = 11&11 and 𝑓 0 (1, 1) = 1, 𝐴 recognizes (11, 𝑏). Therefore, 𝐴
accepts string 𝑎𝑏. The corresponding transition tree 𝑇𝐴 (𝑎𝑏) is shown
in Figure 3, where nodes in 𝑇𝐴 (𝑎𝑏) .accepted are doubly circled.

Similar to the logic circuit representation of rBA, we can repre-

sent rABA with a logic circuit. Specifically, the nondeterministic

choices of transition function 𝛿𝑖,𝑎 for state 𝑞𝑖 under input 𝑎 can

be represented by the circuit shown in Figure 4, where the mul-

tiplexer selects a function in {𝑓𝑖,1, . . . 𝑓𝑖,𝛾 } according to the value

𝑗 ∈ {1, . . . , 𝛾} of the pseudo-input. Also the pseudo-input is quanti-

fied according to the type of nondeterminism Δ(𝑎).

4.1 Conversion from Reversed Alternating
Boolean Automata to Reversed Boolean
Automata

For the purpose of language equation solving, an rABA has ex-

istential or universal nondeterminism, but not both. Under this
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assumption, Algorithm 1 shows the steps determinizing an rABA

to an equivalent rBA. The construction in a way is a superset con-

struction because the state set of the 𝐴𝐷 consists of all valuations

of the state set of 𝐴, i.e., |𝑄𝐷 | = 2
|𝑄 |

. We note that this procedure

is not required in our language solving for 𝑋 derivation, but can be

used in verifying the validity of 𝑋 .

Algorithm 1 rABA_Determinize(𝐴)

Input: rABA 𝐴 = (𝑄, Σ, 𝛾,Δ, 𝛿, 𝑓 0, 𝐹 ) , where Δ(𝑎) is the same for all

𝑎 ∈ Σ
Output: rBA 𝐴𝐷 = (𝑄𝐷 , Σ, 𝛿𝐷 , 𝑓 0

𝐷
, 𝐹𝐷 ) such that 𝐿 (𝐴𝐷 ) = 𝐿 (𝐴)

1: 𝑄𝐷 = {𝑞𝑠 | 𝑠 ∈ B|𝑄 | }
2: 𝛿𝐷 (𝑞𝑠 , 𝑎) =

∨
𝑠∈𝛿 (𝑠′,𝑎) 𝑞𝑠′ .

3: if 𝑓 𝑜𝑟 𝑒𝑎𝑐ℎ 𝑎 ∈ Σ,Δ(𝑎) = ∀
4: 𝑓 0

𝐷
= ¬(∨𝑓 0 (𝑠 )=0 𝑞𝑠 )

5: else if 𝑓 𝑜𝑟 𝑒𝑎𝑐ℎ 𝑎 ∈ Σ,Δ(𝑎) = ∃
6: 𝑓 0

𝐷
=
∨

𝑓 0 (𝑠 )=1 𝑞𝑠

7: 𝐹𝐷 = {𝑞𝑠0 }, where 𝑠0 = (𝐹 (𝑞1), . . . , 𝐹 (𝑞𝑛)) .
8: return 𝐴𝐷 =(𝑄𝐷 , Σ, 𝛿𝐷 , 𝑓 0

𝐷
, 𝐹𝐷 )

The following proposition is useful for showing the correctness

of Algorithm 1.

Proposition 1. Given an rABA 𝐴 with only one kind of transition
property and the corresponding rBA 𝐴𝐷 constructed by Algorithm 1,
𝛿𝐷 (𝑠0

𝐷
, �̂�) [𝑞𝑠 ] = 1 if and only if 𝑠 ∈ 𝑇𝐴 (�̂�) .leaves, where state vector

𝑠 ∈ B |𝑄 | , 𝑞 ∈ 𝑄 , and 𝑠 [𝑞𝑖 ] denotes the value of 𝑞𝑖 in the state vector
𝑠 .

Proof. We prove the proposition by induction on the length

of |�̂� |. The base case |�̂� | = 0 is trivial by the definition. For the

induction step that |�̂� | = 𝑘 , we assume 𝛿𝐷 (𝑠0
𝐷
, �̂�) [𝑞𝑠 ] = 1 ⇔ 𝑠 ∈

𝑇𝐴 (�̂�).leaves. We consider the case �̂� = �̂� ′𝑎 with |�̂� ′ | = 𝑘 . By

definition, we have

𝑠 ∈ 𝑇𝐴 (�̂�).leaves ⇔ ∃𝑠 ′ ∈ 𝑇𝐴 (�̂� ′).leaves, 𝛿 (𝑠 ′, 𝑎) = 𝑠,

and

𝛿𝐷 (𝑠0𝐷 ,�̂�) [𝑞𝑠 ] = 1 ⇔

∃𝑠 ′′ ∈ B |𝑄𝐷 |, 𝛿 (𝑠 ′′, 𝑎) = 𝑠 and 𝛿𝐷 (𝑠0
𝐷
, �̂� ′) [𝑞𝑠′′] = 1.

Therefore, we can prove 𝛿𝐷 (𝑠0
𝐷
, �̂�) [𝑞𝑠 ] = 1 ⇔ 𝑠 ∈ 𝑇𝐴 (�̂�).leaves by

showing

∃𝑠 ′ ∈ 𝑇𝐴 (�̂� ′).leaves, 𝛿 (𝑠 ′, 𝑎) = 𝑠 ⇔

∃𝑠 ′′ ∈ B |𝑄𝐷 |, 𝛿 (𝑠 ′′, 𝑎) = 𝑠 and 𝛿𝐷 (𝑠0
𝐷
, �̂� ′) [𝑞𝑠′′] = 1.

The equation is true by induction hypothesis, leading to

𝛿𝐷 (𝑠0
𝐷
, �̂�) [𝑞𝑠 ] = 1 ⇔ 𝑠 ∈ 𝑇𝐴 (�̂�) .leaves. □

With the above proposition, the correctness of Algorithm 1 can

be established in the following theorem.

Theorem 1. Given an rABA 𝐴 =( 𝑄, Σ, 𝛾,Δ, 𝛿, 𝑓 0, 𝐹 ) with only uni-
versal or existential transitions, we can construct an rBA 𝐴𝐷 by Al-
gorithm 1 such that 𝐿(𝐴𝐷 ) = 𝐿(𝐴).

Proof. We show the correctness of two cases separately. Con-

sider the first case for rABA with only universal nondeterminism.

Since all transitions of𝐴 are universal, �̂� is accepted by𝐴 if and only

Algorithm 2 LangEqSolveFA(S,F)

Input: NFA 𝑆 with alphabet 𝐼 ×𝑂 and 𝐹 with alphabet 𝐼 ×𝑂 ×𝑈 ×𝑉

Output: the largest prefix-closed and input-progressive solution𝑋 in DFA

1: 𝑆 := Complete(𝑆)

2: 𝑆 := Determinize(𝑆)

3: 𝑆 := Complement(𝑆)

4: 𝑆 := Lifting(𝑆, 𝐼 ×𝑂,𝑈 ×𝑉 )

5: 𝑋 := Intersection(Complete(𝐹 ),𝑆)

6: 𝑋 := Projection(𝑋,𝑈 ×𝑉 )

7: 𝑋 := Determinize(𝑋 )

8: 𝑋 := Complement(𝑋 )

9: 𝑋 := PrefixClose(𝑋 )

10: 𝑋 := Progressive(𝑋 ,𝑈 )

11: return 𝑋

if 𝑇𝐴 (�̂�) .leaves ⊆ 𝑇𝐴 (�̂�).accepted. According to Proposition 1 and

the fact that �̂� is accepted by 𝐴𝐷 if and only if 𝑓 0
𝐷
(𝛿𝐷 (𝑠0

𝐷
, �̂�)) = 1,

we have 𝐿(𝐴𝐷 ) = 𝐿(𝐴).
Consider the second case for rABA with only existential nonde-

terminism. Since all the transitions of𝐴 are existential, �̂� is accepted

by 𝐴 if and only if ∃𝑠 ∈ 𝑇𝐴 (�̂�) .leaves, 𝑠 ∈ 𝑇𝐴 (�̂�).accepted. Accord-
ing to Proposition 1 and the fact that �̂� is accepted by 𝐴𝐷 if and

only if 𝑓 0
𝐷
(𝛿𝐷 (𝑠0

𝐷
, �̂�)) = 1, we have 𝐿(𝐴𝐷 ) = 𝐿(𝐴). □

5 LANGUAGE EQUATION SOLVING
In [21], the solution 𝑋 to Eq. (1) is characterized by Eq. (2) and

computed by the procedure of Algorithm 2.

The procedure takes as input a specification NFA 𝑆 with alphabet

𝐼 ×𝑂 and a fixed component NFA 𝐹 with alphabet 𝐼 ×𝑉 ×𝑈 ×𝑂 . It

returns a DFA 𝑋 , the largest prefix-closed and input-progression

solution to Eq. (1). Following Eq. (2), in lines 1-3, 𝑆 is first completed

and determinized to ensure any current state under any input has

exactly one next state. Then, 𝑆 is complemented. In lines 4-5, the

input alphabet of 𝑆 is lifted to 𝐼 ×𝑉 ×𝑈 ×𝑂 in order to construct

product automaton𝑋 of 𝐹 and 𝑆 . In line 6, the input alphabet of𝑋 is

projected to𝑉 ×𝑈 , whichmay result in nondeterministic transitions.

In lines 7-8, 𝑋 is deteminized and complemented. Finally, to make

𝑋 implementable with a sequential circuit, 𝑋 is made prefix-closed

and𝑈 -progressive in lines 9 and 10, respectively.

Solving the language equation by NFA/DFA representation suf-

fers from the scalability problem, even using the partitioned BDD

representation [13], as the algorithm may fail when an NFA/DFA

has a large number of states. Particularly, complementing an NFA

requires superset construction and may result in an exponential

blow-up in the number of states. In this work, we utilize rBA, a

more compact representation for regular languages, to solve lan-

guage equation. Moreover, we employ rABA to allow complement

operation without superset construction. The modified procedure

is shown in Algorithm 3, which is the same as Algorithm 2 except

for two differences: First, the underlying representations are dif-

ferent. The modified procedure takes a specification rBA 𝑆 and a

fixed component rBA 𝐹 as input, and returns an rABA 𝑋 as output.

Second, there is no need to perform Complete and Determinize

operations. Below we elaborate each operation in Algorithm 3.
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Algorithm 3 LangEqSolveBA(S,F)

Input: rBA 𝑆 with alphabet 𝐼 ×𝑂 and 𝐹 with alphabet 𝐼 ×𝑂 ×𝑈 ×𝑉

Output: largest prefix-closed and input-progressive solution 𝑋 in rABA

1: 𝑆 := Complement(𝑆)

2: 𝑆 := Lifting(𝑆, 𝐼 ×𝑂,𝑈 ×𝑉 )

3: 𝑋Int := Intersection(𝐹 ,𝑆)

4: 𝑋 := Projection(𝑋Int ,𝑈 ×𝑉 )

5: 𝑋 := Complement(𝑋 )

6: 𝑋 := PrefixClose(𝑋 )

7: 𝑋 := Progressive(𝑋 ,𝑈 )

8: return 𝑋

5.1 Complement Operation
Given an rBA 𝐴 = (𝑄, Σ, 𝛿, 𝑓 0, 𝐹 ), its complement rBA is 𝐴Com =

(𝑄, Σ, 𝛿, ¬𝑓 0, 𝐹 ) such that 𝐿(𝐴Com) = Complement(𝐿(𝐴)). On the

other hand, given an rABA 𝐴 = (𝑄, Σ, 𝛾,Δ, 𝛿, 𝑓 0, 𝐹 ), we can con-

struct its complement rABA 𝐴Com = (𝑄, Σ, 𝛾,ΔCom, 𝛿,¬𝑓 0, 𝐹 ) such
that 𝐿(𝐴𝐶𝑜𝑚) = Complement(𝐿(𝐴)), where

ΔCom (𝑎) =
{∃, if Δ(𝑎) = ∀
∀, if Δ(𝑎) = ∃ .

The correctness of the above construction can be reasoned as

follows. For �̂� ∈ Σ∗ and |�̂� | = 𝑘 , we can construct the same tran-

sition tree 𝑇 (�̂�) for both 𝑇𝐴 (�̂�) and 𝑇𝐴Com (�̂�) because the state

transition of 𝐴 and 𝐴Com are the same. Note that if 𝑇 (�̂�) .root ∈
𝑇𝐴 (�̂�).accepted ⇔ 𝑇 (�̂�).root ∉ 𝑇𝐴Com (�̂�).accepted holds for every

�̂� ∈ Σ∗, then 𝐿(𝐴𝐶𝑜𝑚) = Complement(𝐿(𝐴)). In fact, we can show

that ∀𝑠 ∈ 𝑇 (�̂�), 𝑠 ∈ 𝑇𝐴Com (�̂�) .accepted ⇔ 𝑠 ∉ 𝑇𝐴 (�̂�) .accepted. We

prove this by a simple induction on the level of 𝑠 .

The base case that 𝑠 is a leaf is trivial since 𝑓 0Com = ¬𝑓 0. For
the induction step, we assume the statement holds for 𝑠 at level

𝑡 < 𝑘 . For 𝑠 at level 𝑡 − 1, there are two cases. First, we consider the

case that Δ𝐴 (𝜎𝑡 ) = ∃. If 𝑠 ∈ 𝑇𝐴 (�̂�).accepted, there is a child 𝑠 ′ ∈
𝑇𝐴 (�̂�).accepted. By induction hypothesis, 𝑠 ′ ∉ 𝑇𝐴Com (�̂�) .accepted.
SinceΔ𝐴Com = ∀, 𝑠 ∉ 𝑇𝐴Com (�̂�) .accepted. The case 𝑠 ∉ 𝑇𝐴 (�̂�) .accepted
is similar. Next, we consider the case that Δ𝐴 (𝜎𝑡 ) = ∀. If 𝑠 ∈
𝑇𝐴 (�̂�).accepted, all of its children are in 𝑇𝐴 (�̂�) .accepted. By induc-

tion hypothesis, all of its children are not in 𝑇𝐴Com (�̂�) .accepted.
Therefore, 𝑠 ∉ 𝑇𝐴Com (�̂�) .accepted. The case 𝑠 ∉ 𝑇𝐴 (�̂�).accepted is

similar. Hence, we have

𝑇𝐴Com (�̂�) .accepted = 𝑇𝐴 (�̂�) .nodes \𝑇𝐴 (�̂�).accepted,
leading to 𝐿(𝐴𝐶𝑜𝑚) = Complement(𝐿(𝐴)).

5.2 Lifting Operation
Given an rBA 𝐴 = (𝑄, 𝐼, 𝛿, 𝑓 0, 𝐹 ), we can construct an rBA

𝐴Lift (𝐼×𝑈 ) = (𝑄, 𝐼 ×𝑈 , 𝛿Lift , 𝑓
0, 𝐹 )

such that 𝐴Lift (𝐼×𝑈 ) = Lifting(𝐿(𝐴), 𝐼 ,𝑈 ), where 𝛿Lift (𝑞, (𝑖, 𝑢)) =

𝛿 (𝑞, 𝑖). On the other hand, given an rABA𝐴 =(𝑄, 𝐼,𝛾,Δ, 𝛿, 𝑓 0, 𝐹 ), we
can construct an rABA𝐴Lift (𝐼×𝑈 ) = (𝑄, 𝐼 ×𝑈 ,𝛾,Δ, 𝛿Lift , 𝑓

0, 𝐹 ) such
that 𝐴Lift (𝐼×𝑈 ) = Lifting(𝐿(𝐴), 𝐼 ,𝑈 ), where 𝛿Lift (𝑞, (𝑖, 𝑢)) = 𝛿 (𝑞, 𝑖).

5.3 Intersection Operation
Given two rBA 𝐴1 = (𝑄1, Σ, 𝛿1, 𝑓

0

1
, 𝐹1) and 𝐴2 = (𝑄2, Σ, 𝛿2, 𝑓

0

2
, 𝐹2),

their intersection rBA is𝐴Int = (𝑄1∪𝑄2, Σ, 𝛿1∪𝛿2, 𝑓 0
1
∧ 𝑓 0

2
, 𝐹1∪𝐹2)

such that 𝐿(𝐴Int ) = Intersection(𝐿(𝐴1), 𝐿(𝐴2)). On the other hand,

given two rABA𝐴1 = (𝑄1, Σ, 𝛾,Δ, 𝛿1, 𝑓
0

1
, 𝐹1) and𝐴2 = (𝑄2, Σ, 𝛾,Δ, 𝛿2,

𝑓 0
2
, 𝐹2) with the same 𝛾 and Δ, we can construct an rABA

𝐴Int = (𝑄1 ∪𝑄2, Σ, 𝛾,Δ, 𝛿1 ∪ 𝛿2, 𝑓
0

1
∧ 𝑓 0

2
, 𝐹1 ∪ 𝐹2)

such that 𝐿(𝐴Int ) = Intersection(𝐿(𝐴1), 𝐿(𝐴2)).

5.4 Projection Operation
Given an rBA 𝐴 =(𝑄, 𝐼 × 𝑈 , 𝛿, 𝑓 0, 𝐹 ), we construct an rABA 𝐴′ =
(𝑄,𝑈 ,𝛾,Δ′, 𝛿 ′, 𝑓 0, 𝐹 ) such that 𝐿(𝐴′) =Projection(𝐿(𝐴),𝑈 ), where
𝛾 = |𝐼 |, ∀𝑢 ∈ 𝑈 , Δ′(𝑢) = ∃, and 𝛿 ′(𝑞,𝑢) = {𝛿 (𝑞, (𝑖, 𝑢)) |𝑖 ∈ 𝐼 }. On
the other hand, given an rABA 𝐴 = (𝑄, 𝐼 ×𝑈 ,𝛾,Δ, 𝛿, 𝑓 0, 𝐹 ), where
Δ((𝑖, 𝑢)) = ∃, and 𝛿 (𝑞, (𝑖, 𝑢)) = (𝑓(𝑖,𝑢),𝑞,1, . . . , 𝑓(𝑖,𝑢),𝑞,𝛾 ), we can

construct an rABA 𝐴′ =( 𝑄,𝑈 ,𝛾 ′,Δ, 𝛿 ′, 𝑓 0, 𝐹 ) such that 𝐿(𝐴′) =
Projection(𝐿(𝐴),𝑈 ), where 𝛾 ′ = 𝛾 × |𝐼 | and

𝛿 ′(𝑞,𝑢) = (𝑓(𝑖1,𝑢),𝑞,1, . . . , 𝑓(𝑖 |𝐼 |,𝑢),𝑞,1, 𝑓(𝑖1,𝑢),𝑞,2, . . . , 𝑓(𝑖 |𝐼 |,𝑢),𝑞,𝛾 ).

5.5 Prefix-Close Operation
Given an rBA 𝐴 =(𝑄, Σ, 𝛿, 𝑓 0, 𝐹 ), we can construct the rBA

𝐴PC = (𝑄 ∪ {𝑞pc}, Σ, 𝛿pc, 𝑓 0 ∧ 𝑞pc, 𝐹 ∪ {𝑞pc})
such that 𝐿(𝐴PC) = PrefixClose(𝐿(𝐴)), where

𝛿pc (𝑞, 𝑎) =
{

𝛿 (𝑞, 𝑎), if 𝑞 ∈ 𝑄

𝑞pc ∧ 𝑓 0, if 𝑞 = 𝑞pc
.

On the other hand, given an rABA 𝐴 =(𝑄, Σ, 𝛾,Δ, 𝛿, 𝑓 0, 𝐹 ), we
can construct the rABA

𝐴PC = (𝑄 ∪ {𝑞pc}, Σ, 𝛾,Δ, 𝛿pc, 𝑓 0 ∧ 𝑞pc, 𝐹 ∪ {𝑞pc})
such that 𝐿(𝐴PC) ⊆ 𝐿(𝐴) is prefix-closed, where 𝛿pc

𝛿pc (𝑞, 𝑎) =


𝛿 (𝑞, 𝑎) , if 𝑞 ∈ 𝑄

(𝑓 0 ∧ 𝑞pc, . . . , 𝑓
0 ∧ 𝑞pc︸                      ︷︷                      ︸

𝛾

), if 𝑞 = 𝑞pc .

Note that if ∀𝑎 ∈ Σ, Δ(𝑎) = ∀, then 𝐿(𝐴PC)= PrefixClose(𝐿(𝐴)).
The correctness of the prefix-close operation for rABA can be

established as follows. First, we show that 𝐿(𝐴PC) is prefix-closed,
i.e., �̂� ∈ 𝐿(𝐴PC) ⇔ Prefix(�̂�) ⊆ 𝐿(𝐴PC), by induction on the length

of �̂� . For the base case |�̂� | = 0, the property holds trivially. For the

induction step |�̂� | = 𝑘 , we assume �̂� ∈ 𝐿(𝐴PC) ⇔ Prefix(�̂�) ⊆
𝐿(𝐴PC) is true. For |�̂� | = 𝑘 + 1, let �̂� = �̂� ′𝑎 ∈ 𝐿(𝐴𝑃𝐶 ). Then, we con-
struct 𝑇𝐴PC (�̂�) and 𝑇𝐴PC (�̂� ′) = 𝑇𝐴PC (�̂�) \𝑇𝐴PC (�̂�) .leaves. We prove

�̂� ′ ∈ 𝐿(𝐴𝑃𝐶 ) by showing (𝑇𝐴PC (�̂�) .accepted \ 𝑇𝐴PC (�̂�).leaves) ⊆
𝑇𝐴PC (�̂� ′).accepted. For 𝑠 in the 𝑘th level, if 𝑠 ∈ 𝑇𝐴PC (�̂�).accepted,
there is a child 𝑠 ′ of 𝑠 such that (𝑓 0 ∧ 𝑞pc) (𝑠 ′) = 1, which implies

𝑞𝑝𝑐 (𝑠 ′) = (𝑓 0 ∧ 𝑞pc) (𝑠) = 1, leading to 𝑠 ∈ 𝑇𝐴PC (�̂� ′).accepted. By
definition, (𝑇𝐴PC (�̂�) .accepted\𝑇𝐴PC (�̂�) .leaves) ⊆ 𝑇𝐴PC (�̂� ′).accepted
holds for level 1 to𝑘 . By the induction hypothesis, we have Prefix(�̂� ′)
⊆ 𝐿(𝐴PC). Therefore, Prefix(�̂�) = Prefix(�̂� ′) ∪ {�̂�} ⊆ 𝐿(𝐴PC), lead-
ing to 𝐿(𝐴PC) is prefix-closed. Besides, by 𝑓 0PC (𝑠) = (𝑓 0 ∧𝑞pc) (𝑠) =
1 ⇒ 𝑓 0 (𝑠) = 1, we have 𝐿(𝐴PC) ⊆ 𝐿(𝐴). Since 𝐿(𝐴PC) ⊆ 𝐿(𝐴), we
have 𝐿(𝐴PC) ⊆ PrefixClose(𝐿(𝐴)) is prefix-closed.

Moreover, for 𝐴PC with only universal nondeterminism, we can

establish 𝐿(𝐴PC) = PrefixClose(𝐿(𝐴)) by further showing 𝐿(𝐴PC)
⊇ PrefixClose(𝐿(𝐴)). We show that �̂� ∈ PrefixClose(𝐿(𝐴)) ⇒ �̂� ∈
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(𝐿(𝐴𝑃𝐶 )) by induction on the length of input �̂� . For the base case

|�̂� | = 0, the property holds trivially. For the induction step |�̂� | = 𝑘 ,

we assume that �̂� ∈ PrefixClose(𝐿(𝐴)) ⇒ �̂� ∈ (𝐿(𝐴𝑃𝐶 )) holds.
For |�̂� | = 𝑘 + 1, let �̂� = �̂� ′𝑎 ∈ PrefixClose(𝐿(𝐴)). By the prop-

erty of prefix-closedness, we have �̂� ′ ∈ PrefixClose(𝐿(𝐴)). By in-

duction hypothesis, we have �̂� ′ ∈ 𝐿(𝐴PC). Then, we construct

trees 𝑇𝐴PC (�̂�) and 𝑇𝐴PC (�̂� ′) = 𝑇𝐴PC (�̂�) \𝑇𝐴PC (�̂�) .leaves. Consider-
ing 𝑠 ∈ 𝑇𝐴PC (�̂�) .leaves, its parent 𝑠 ′ is a leaf of 𝑇𝐴PC (�̂� ′). First,
for �̂� ′ ∈ 𝐿(𝐴PC) with universal transition property, we know

that 𝑠 ′ ∈ 𝑇𝐴PC (�̂� ′).accepted, i.e., (𝑓 0 ∧ 𝑞pc) (𝑠 ′) = 𝑞pc (𝑠) = 1.

Second, for each 𝑠 ∈ 𝑇𝐴PC (�̂�) .leaves, we have 𝑓 0 (𝑠) = 1 since

�̂� ∈ PrefixClose(𝐿(𝐴)) ⊆ 𝐿(𝐴). Combining two results, we have

(𝑓 0∧𝑞𝑝𝑐 ) (𝑠) = 1, leading to �̂� ∈ 𝐿(𝐴PC). Hence, we have 𝐿(𝐴PC) =
PrefixClose(𝐿(𝐴)) for 𝐴 with only universal nondeterminism.

5.6 Input-Progressive Operation
After the prefix-close operation, the input-progressive operation

is applied to make the trimmed language valid for deterministic

hardware realization. Given a finite automaton 𝑋 with input al-

phabet 𝑈 ×𝑉 , we can derive an new automaton with the largest

𝑈 -progressive language of 𝐿(𝑋 ) by applying the algorithm pro-

posed by Yevtushenko et al. [21]. The algorithm iteratively deletes

invalid states that cannot reach accepting states under input set

{(𝑢, 𝑣) | 𝑣 ∈ 𝑉 } with fixed 𝑢 ∈ 𝑈 . The procedure is terminated

when no more state can be deleted during the iteration or the initial

state is deleted.

To perform the input-progressive operation on rBA/rABA, we

modify the prior algorithm [21] as follows. Since the acceptance of

strings are decided by values of all states under rBA/rABA represen-

tation, we consider the transition of all states rather than a single

state. The state vector 𝑠 ∈ B |𝑄 |
is valid if and only if 𝑠 satisfies the

formula

𝜒 = ∀𝑢 ∃𝑣 𝑓 0 (𝛿 (𝑠, (𝑢, 𝑣))), (3)

where 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 . That is, 𝜒 of Eq. (3) is the characteristic

function of the set of valid state vectors. Instead of deleting invalid

state vectors, we modify the initial function to make only valid

state vectors acceptable. Then, we update the initial function 𝑓 0 to

𝑓 0 := 𝑓 0 ∧ 𝜒. (4)

Note that quantifier elimination is required to update the initial

function. Therefore, only input strings that transition to valid state

vectors are accepted by the automaton. The steps that deriving 𝜒

and updating 𝑓 0 are repeated until the valid state set of the current

iteration 𝜒new equals that of the previous iteration 𝜒old , that is, a

fixed-point is reached.

Algorithm 4 Progressive(X,U)

Input: prefix-closed rBA/rABA 𝑋 and input set𝑈

Output: prefix-closed and𝑈 -progressive rBA/rABA 𝑋

1: 𝜒old := 1

2: 𝜒new := ∀𝑢 ∃𝑣 𝑓 0 (𝛿 (𝑠, (𝑢, 𝑣)))
3: while 𝜒new ≠ 𝜒old
4: 𝑓0 := 𝑓0 ∧ 𝜒new
5: 𝜒old := 𝜒new
6: 𝜒new := ∀𝑢 ∃𝑣 𝑓 0 (𝛿 (𝑠, (𝑢, 𝑣)))
7: return 𝑋

Algorithm 4 trims rBA/rABA to satisfy the input-progressive

property. In line 2, the characteristic function 𝜒new is initialized by

Eq. (3). Then, line 4 updates the initial function by Eq. (4), and line 5

records 𝜒old , the valid state set of the previous iteration. Next, line 6

updates 𝜒new according to Eq. (3) with the new initial function. The

while-loop of line 3 repeats until 𝜒new and 𝜒old are equivalent.

6 EXPERIMENTAL RESULTS
The proposed algorithm was implemented in C++ within the ABC
system [2]. All the experiments were conducted on a Linux server

with Intel Xeon Silver 4210 CPUs of 2.20 GHz and 126 GB RAM.

The experiments were conducted on the ISCAS [3] and ITC [6]

benchmarks, which were converted to the unknown component

instances by the latch-split operation in BALM [13], implemented

in the MVSIS system [9]. The latch-split operation transforms a

given sequential circuit 𝑆 into two sub-circuits 𝐹 and 𝑅. Then 𝑆 is

treated as the specification, and 𝐹 the fixed component containing

a subset of the latches in 𝑆 . Accordingly, 𝑅 is a particular solution

to the unknown part 𝑋 and contains the rest of the latches. Given

𝑆 and 𝐹 , we compute the complete sequential flexibility 𝑋 , which

is the largest prefix-closed and input progressive solution of Eq. (1).

We optionally use synthesis script scleanup; ssweep; of ABC for

optimizing 𝑆 and 𝐹 .

The experimental results of BALM and our method are shown in

Table 3, where #𝑖 , #𝑜 , #𝑙 , #𝑙𝐹 , and #𝑙𝑅 denote the input number, the

output number, the total latch number in 𝑆 , the latch number in

𝐹 , and the latch number in rest part 𝑅, respectively. Our method is

compared with the state-of-the-art method [13] in terms of solution

size (|𝑄 | of 𝑋 ) and runtime in Table 3. An entry “TO” in the table

indicates that the case cannot be solved within the timeout limit

of 3600 seconds. Note that we performed quantifier elimination by

using command qvar of ABC.
The results suggest that the rBA/rABA-based method outper-

forms the partitioned representation by solving 4 more cases among

the considered 31 cases. As observed, the runtime and solution size

of [13] increase drastically for large #𝑖 , #𝑜 , #𝑙 , #𝑙𝐹 values. When

the state number of 𝑋 is too large, the partitioned representation

fails to solve the problem. As our method does not require superset

construction in the unknown component 𝑋 derivation, the state

number of𝑋 equals #𝑙 +#𝑙𝐹 +3 (for 2 additional states introduced in
extracting rBA from sequential circuits (of 𝑆 and 𝐹 ) and 1 extra state

introduced by the prefix-close operation). Thus, when 𝑆 and 𝐹 are

simplified, the state number of 𝑋 can be reduced. The solution sizes

of [13] are on average 100× larger than those of ours, showing that

rBA/rABA is a more powerful representation for language equation

solving. For the cases solved by both methods, our algorithm is

on average 740× faster than [13]. For all the instances, our algo-

rithm can complete the operations of lines 1-6 in Algorithm 3 in

less than 0.03 seconds. The most time-consuming part among the

language operations of our algorithm is the input progressive oper-

ation, which requires quantifier elimination to convert a quantified

formula to a quantifier-free one for initial function update. The

quantifier elimination procedure timed out on 5 of the instances.

Our method outperforms the partitioned representation by solving

9 more cases among the considered 36 cases.
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Table 3: Results for comparison between [13] and ours.

Name #𝑖/#𝑜/#𝑙 #𝑙𝐹 /#𝑙𝑅

[13] Ours

|𝑄 | Time

(s)

w/o optimization w/ optimization

|𝑄 | Mem

(MB)

Time

(s)

|𝑄 | Mem

(MB)

Time

(s)

s208 10/1/8 4/4 184 0.10 16 34.84 0.32 12 36.76 0.34

s298 3/6/14 8/6 219 0.40 25 34.60 0.08 24 37.11 0.08

s344 9/11/15 6/9 9800 181.54 24 34.26 0.06 23 37.26 0.09

s349 9/11/15 6/9 38266 743.84 24 34.21 0.08 23 37.33 0.08

s382 3/6/21 8/13 17730 35.48 32 34.46 0.09 31 37.29 0.10

s386 7/7/6 4/2 15 0.02 13 34.93 0.20 12 38.02 0.18

s400 3/6/21 8/13 17730 34.85 32 34.78 0.09 31 37.45 0.09

s420 19/2/16 9/7 244 0.70 28 999.96 413.88 13 37.19 0.74

s444 3/6/21 6/15 8866 15.57 30 34.65 0.07 29 37.68 0.09

s510 19/7/6 4/2 49 0.05 13 34.55 0.11 12 37.48 0.10

s526 3/6/21 12/9 — TO 36 35.76 0.12 35 38.18 0.13

s713 35/23/19 6/13 — TO — — TO — — TO

s820 18/19/5 3/2 28 0.04 11 36.00 0.45 10 38.66 0.35

s832 18/19/5 3/2 28 0.05 11 35.92 0.86 10 39.14 0.87

s838 35/2/32 11/21 82 1.26 — — TO — — TO

s953 16/23/30 7/23 505 244.74 40 35.43 0.15 38 37.44 0.15

s1196 14/14/19 9/10 — TO — — TO — — TO

s1238 14/14/19 9/10 — TO — — TO — — TO

s1423 17/5/75 21/54 — TO — — TO — — TO

s1488 8/19/7 4/3 49 0.08 14 92.14 18.47 12 52.06 3.31

s1494 8/19/7 4/3 49 0.07 14 107.93 19.34 12 47.28 3.27

s9234 36/39/211 41/170 — TO 255 39.44 1.87 173 41.28 1.66

b01 4/2/5 3/2 34 0.00 11 34.05 0.08 10 37.34 0.07

b02 3/1/4 3/1 31 0.00 10 33.61 0.07 9 36.27 0.09

b04 13/8/66 16/50 — TO 85 36.67 0.20 85 39.20 0.22

b05 3/36/34 9/25 532 19.60 46 36.43 0.79 46 39.23 0.72

b07 3/8/49 9/40 3927 2.80 61 35.57 0.17 49 38.62 0.18

b08 11/4/21 6/15 85229 385.63 30 34.92 0.10 29 37.59 0.12

b09 3/1/28 9/19 — TO 40 35.40 0.12 39 37.73 0.12

b10 13/6/17 8/9 142797 1026.54 28 34.95 0.12 27 37.62 0.13

b11 9/6/31 12/19 — TO 46 36.00 0.22 45 38.72 0.24

b13 12/10/53 11/42 — TO 67 35.00 0.17 58 37.45 0.17

b14 34/54/245 45/200 — TO 293 45.07 2.29 263 51.06 2.70

b15 37/70/449 49/400 — TO 501 53.80 3.47 467 62.80 7.15

b20 34/22/490 40/450 — TO 533 71.66 6.25 472 61.38 4.88

b21 34/22/490 40/450 — TO 533 71.85 6.16 472 61.35 5.25

Number of solved cases 22 31 31

Table 4: Results of our method (w/ optimization) for different
latch-split options for 𝐹 and 𝑅 on circuit b04.

#𝑙𝐹 /#𝑙𝑅 |𝑄 | Mem (MB) Time (s)

6/60 75 39.003 0.17

16/50 85 39.328 0.23

26/40 95 39.898 0.34

36/30 105 40.434 0.54

46/20 115 564.792 57.66

56/10 — — TO

To study the effect of latch-split, we performed a case study

on circuit b04. The results are shown in Table 4, which compares

the runtime required for different latch numbers placed in 𝐹 and

𝑅. From the table, it can be observed that runtime increases in

accordance with the latch number in 𝐹 , and thus the state number

|𝑄 | of 𝑋 . It indicates that, for larger #𝑙𝐹 , a circuit with more state

bits is required to encode the rABA of 𝑋 , and thus the quantifier

elimination process of the input-progressive operation would take

more time. We note that by the latch-split method and the input-

progressive operation, the variables to be eliminated are those (with

#𝑖 + #𝑙𝐹 bits) that encode alphabet𝑈 , those (with #𝑙𝑅 bits) encode𝑉 ,

and the pseudo-inputs (with #𝑜 bits) of𝑋 for encoding deterministic

choices. Therefore, the total number of variables to be eliminated

is #𝑖 + #𝑙𝐹 + #𝑙𝑅 + #𝑜 , which is fixed for a circuit regardless of how

the latches are split in 𝐹 and 𝑅.

7 CONCLUSIONS
This paper has proposed variants of Boolean automata, rBA and

rABA, amenable for logic circuit representation that supports scal-

able regular language manipulation. Language operations based

on rBA and rABA have been devised. Experimental results have

shown that our method outperforms the state of the art. In this

work, we mainly rely on ABC for quantifier elimination in the input-

progressive operation. As there are recent Boolean function syn-

thesis tools [10, 15] being developed, we plan to take advantage of

them for potential improvements. Also, we would like to explore

more applications using our developed Boolean automata.
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