
1

Domain-Specific Quantum Architecture
Optimization

Wan-Hsuan Lin, Bochen Tan, Murphy Yuezhen Niu, Jason Kimko, and Jason Cong Fellow, IEEE

Abstract—With the steady progress in quantum computing
over recent years, roadmaps for upscaling quantum processors
have relied heavily on the targeted qubit architectures. So far,
similarly to the early age of classical computing, these designs
have been crafted by human experts. These general-purpose
architectures, however, leave room for customization and opti-
mization, especially when targeting popular near-term QC ap-
plications. In classical computing, customized architectures have
demonstrated significant performance and energy efficiency gains
over general-purpose counterparts. In this paper, we present
a framework for optimizing quantum architectures, specifically
through customizing qubit connectivity. It is the first work that
(1) provides performance guarantees by integrating architecture
optimization with an optimal compiler, (2) evaluates the impact
of connectivity customization under a realistic crosstalk error
model, and (3) benchmarks on realistic circuits of near-term in-
terest, such as the quantum approximate optimization algorithm
(QAOA) and quantum convolutional neural network (QCNN).
We demonstrate up to 59% fidelity improvement in simulation
by optimizing the heavy-hexagon architecture for QAOA circuits,
and up to 14% improvement on the grid architecture. For the
QCNN circuit, architecture optimization improves fidelity by
11% on the heavy-hexagon architecture and 605% on the grid
architecture.

Index Terms—Quantum, architecture, domain-specific archi-
tecture, architecture optimization, design automation.

I. INTRODUCTION

With state-of-the-art quantum computers reaching hundreds
of qubits in size, we are at a historical turning point of
moving beyond noisy intermediate–scale quantum (NISQ) de-
vices towards scalable and error-corrected quantum computers.
Existing quantum architecture designs are based on theoretical
quantum error correction research, which historically has been
detached from the exciting progress in hardware engineering.
As a result, the interface between quantum computing software
and hardware, i.e., quantum computing architecture, is far from
optimal and provides many opportunities for improvement.
Quantum computing architectures define which operations can
be performed on certain qubits and how qubits are connected
to one another. The latter is represented by coupling graphs,
in which the vertices are physical qubits and the edges
are connections. Two-qubit entangling operations can only
occur between two adjacent qubits in the coupling graph.
To our knowledge, current quantum computing architectures
have been designed exclusively by human experts and are

W.-H. Lin, B. Tan, J. Kimko, and J. Cong are with the Department of
Computer Science, University of California, Los Angeles, CA, USA; email:
{wanhsuanlin,bochentan,kimko}@ucla.edu, cong@cs.ucla.edu.

M. Y. Niu is with Google AI Quantum, Venice, CA, USA; email: mur-
phyniu@google.com.

not tailored to specific quantum applications. Thus, many
applications, e.g., those in quantum machine learning and opti-
mization, are not optimally implemented on existing laboratory
quantum computers in terms of required quantum circuit depth
and circuit fidelity. In pursuit of discovering the compelling
commercial application of quantum computers and uncovering
new quantum architectures that promise transformative advan-
tage in scalability, it is necessary to improve and automate
how we design quantum architectures.

Domain-specific architecture designs have led to some of the
biggest accelerations in classical computing, including deep
learning (e.g., [1]–[6]), large-scale genome analysis (e.g., [7]–
[10]), and big data applications (e.g., [11]–[15]). By harnessing
distinct features of each application domain, the computational
capacity of the underlying hardware can be fully utilized to
achieve what is otherwise impossible with a general-purpose
architecture. To obtain a similar gain for quantum computation,
an effective design methodology must discover architectures
that maximize circuit fidelity under realistic error modeling,
thereby improving the success rate of the targeted algorithm.
When this success rate exceeds a certain threshold, a quantum
computer has the potential to outperform a classical one [16].

Existing efforts in domain-specific architecture search have
yet to be successfully applied to quantum applications due to
the large dimensionality of the search space as well as the
difficulty in architecture evaluation due to a lack of realistic
circuit performance estimation metrics. The study in [17] con-
siders the potential of coupling graph modifications based on a
given circuit’s properties. However, this work does not provide
performance guarantees. This heuristic approach leads to an in-
accurate estimation of the architecture performance, and thus,
may lead to a sub-optimal architecture. The recent work in [18]
makes a valuable comparison between different architectures
and presents some advantages of all-to-all connectivity for
trapped ions. However, the main focus is on comparison rather
than designing new quantum architectures for domain-specific
applications. Li et al. [19] is the first work that proposes
the concept of quantum architecture customization targeting
on fixed-frequency superconducting qubits. They present a
hardware-design workflow for quantum applications to achieve
high yield rates. However, since their method adopts heuristic
strategies for architecture optimization, and it is hard to guar-
antee the optimality of the resulting architecture. In addition,
they use post-mapping gate count as the evaluation metric,
which may not accurately reflect the circuit performance due
to the lack of consideration for other noise sources, e.g., qubit
idling errors and crosstalk.

In this work, we propose the first domain-specific quantum

2

architecture optimization framework to improve circuit fidelity
for quantum applications to achieve guaranteed yield rates. To
overcome the inherently difficult search problem, we integrate
an optimal compilation process with the architecture optimiza-
tion procedure in a combined SMT formulation to enable
optimal compilation results and offer a provable performance
guarantee for the search outcome by modeling the architecture
optimization as a constraint satisfaction problem. Under this
framework, we propose an algorithm that searches for the
optimal architectures using different hardware requirements
from a defined architecture space in order to minimize the
required computational resources for a target circuit. We
demonstrate the effectiveness of customized architectures with
a realistic circuit fidelity model and achieve 59% fidelity
improvement on heavy-hexagon architectures and 14% fidelity
improvement on grid architectures for QAOA circuits. For
QCNN circuits, we achieve 11% fidelity improvement on
heavy-hexagon architectures and 605% fidelity improvement
on grid architectures. With our methodology, heavy-hexagon
architectures, designed for scalable quantum error correction
code, can achieve comparable circuit fidelity with grid archi-
tectures, despite having 33.3% fewer degrees of connectivity.
Our work opens up new directions in quantum computing
research towards building large-scale quantum computers by
enabling a seamless integration of new quantum computing
and error correction paradigms into the ever-changing quantum
hardware engineering and application discovery landscapes
through automated quantum architecture search.

The remainder of this paper is organized as follows. Sec-
tion II covers background knowledge for quantum circuits
and quantum circuit synthesis, and Section III introduces the
NISQ applications used for evaluation. Section IV defines
our architecture space, Section V demonstrates our domain-
specific architecture optimization methodology, and Section VI
presents our crosstalk error model and the metrics for archi-
tecture performance evaluation. Finally, we show the experi-
mental results in Section VII and discuss some future research
directions in Section VIII.

II. BACKGROUND

A. Qubits, Quantum Gates, and Quantum Circuits
The state of a qubit can be represented by the linear combi-

nation a|0⟩+ b|1⟩, where |0⟩ and |1⟩ are basis quantum states
in Dirac notation and a and b are complex coefficients. Each
additional qubit doubles the dimension of the quantum state
space, so n qubits can be in a superposition state of 2n basis
states from |0⟩ to |2n⟩. Quantum gates are unitary matrices
that are applied on quantum states via matrix multiplication.
Measuring a qubit is an irreversible operation that collapses
the qubit’s superposition to extract state information. The mea-
surement outcome of a single qubit is |0⟩ with probability |α|2
and |1⟩ with probability |β|2. A quantum circuit is a sequence
of operations, including qubit initialization, gates acting on the
qubits, and qubit measurements. Due to environment noises
and imperfect qubit operations, the success rate of a quantum
circuit is measured by its circuit fidelity, which is affected by
the circuit execution time, the total gate count, and the layout
synthesis solution to be discussed next.

B. Logic and Layout Synthesis

To execute a quantum circuit on a quantum computer, logic
and layout synthesis are needed to map the circuit onto the
hardware architecture. During logic synthesis, we translates
the original gates in the circuit into supported gates from
the target computer’s gate set by gate decomposition. For
example, we can apply KAK decomposition [20] to translate
an arbitrary two-qubit gate into three CNOT gates and some
single-qubit gates, which are supported by superconducting
qubit architectures [16], [21] At this point, any two-qubit gate
can logically act on an arbitrary pair of qubits in the quantum
circuit, but the physical execution of this gate requires the two
involved qubits to be coupled in the target architecture. Layout
synthesis [22], also called qubit mapping [23], [24] addresses
this issue by mapping the logical qubits to physical qubits for
each time step and scheduling gate operations while satisfying
a given architecture’s connectivity constraints as defined in
its coupling graph. Depending on the architecture, some two-
qubit gates may still be scheduled on two non-adjacent qubits.
In this case, layout synthesizer can insert SWAP gates as
needed to exchange the quantum states of two physical qubits,
or directly schedule a long-range gate with some overhead,
e.g., a bridge gate [24]. However, both approaches increase
the total gate count and circuit depth, which increases the
execution time and introduces the opportunity of more errors.

Layout synthesis is critical for evaluating architecture. On
the hardware side, we usually fix native gate sets since they
are mainly determined by fundamental physical properties. In
comparison to the native gate sets, a wide range of coupling
graphs has been introduced, e.g., [21], [25]. As a results, an
effective layout synthesizer needs to be adaptable to different
qubit connectivities. On the software side, logic synthesis al-
ready has established canonical and efficient methods. For in-
stance, the common single-qubit and two-qubit gates appearing
in many NISQ applications have a canonical decomposition
to native gate sets [20]. The layout synthesis problem, on
the other hand, is NP-hard [22]–[24] with many heuristic
approaches remaining far from optimal [22]. Moreover, the
architecture selection heavily impact the results of layout
synthesis and vice versa.

III. NISQ APPLICATIONS

Circuit-based quantum computation realizes universal quan-
tum operations by executing quantum circuits consisting of
gates from a universal quantum gate set. The majority of NISQ
applications utilizes the circuit-based model and chooses the
universal gate set to be a set of single-qubit gates plus a
two-qubit gate. This is also adopted in the research regarding
quantum circuit complexity, e.g., Ref. [26]–[28]. As mentioned
in Section II, a real-world quantum computation needs to
adhere to connectivity constraints imposed by a quantum
computer’s coupling graph, resulting in a variety of circuit
sizes depending on the optimality of the inserted gates. In this
study, in order to understand the potential of QC architecture
customization, we focus on two NISQ applications: Quantum
Approximate Optimization Algorithm (QAOA) [29], [30] and
Quantum Convolutional Neural Network (QCNN) [31]. For

3

. . .

. . .

. . .

. . .

|0⟩ H

U(C, γ1)

e−iβ1X

U(C, γp)

e−iβpX

|0⟩ H e−iβ1X e−iβpX

|0⟩ H e−iβ1X e−iβpX

|0⟩ H e−iβ1X e−iβpX

Classical Optimizer

β1
γp

γ1 βp

(a) QAOA algorithm involves executing the QAOA quantum circuit and
classically optimizing the parameters in the circuit.

U(C, γ)

e−iγZZ

e−iγZZ

e−iγZZe−iγZZ

e−iγZZ

e−iγZZ

=

(b) Phase-splitting operator induced by a MAXCUT instance. (If a wire goes
through a gate, then the gate does not operate on that wire, i.e., qubit.)

Fig. 1. Applying QAOA to the MAXCUT problem.

the concept of illustration, we choose QAOA due to its wide
range of application for solving satisfiability optimization
problems that has immediate practical use and QCNN for
its valuable application on classifying many-body quantum
states. Additionally, as the goal of architecture optimization
is to reduce the compilation overheard, these applications
are chosen due to their demanding requirements on qubit
connectivity.
Quantum Approximate Optimization Algorithm (QAOA).
Many computational problems can be formulated as a
quadratic unconstrained binary optimization (QUBO) prob-
lem [32] or clauses of boolean variables in conjunctive normal
form (CNF) which optimization objective is defined as the
number of satisfied clauses. QAOA [29], [30] aims to solve
these optimization problems approximately with a quantum
circuit consisting of 2p groups of gates

U(B, βp)U(C, γp)...U(B, β1)U(C, γ1)|s⟩, (1)

where |s⟩ is the initialized superposition state produced by
applying the Hadamard gate on all qubits at |0⟩, and β1, . . . , βp

and γ1, . . . , γp are parameters. Fig. 1a illustrates the QAOA
circuit for the MAXCUT problem (NP-hard) on a graph. The
mixing operator U(B, βj) is a layer of single-qubit gates
e−iβjX on all qubits. The phase-splitting operator U(C, γj)
consists of two-qubit gates e−iγjZkZl acting on all qubit
pairs (k, l), where each pair corresponds to an edge in the
graph. Fig. 1b shows the phase-splitting operator for a four-
vertex complete graph where e−iγZZ gates are applied on all
qubit pairs. After alternatively applying mixing and phase-
splitting operators p times to the state |s⟩, we measure the
resulting quantum state. According to the measurement results,
classical optimizers derive β and γ parameters for the next
iteration, as demonstrated in Fig. 1a. The required connec-
tivity for QAOA is decided by the graph derived from the
input problem because the graph defines the phase-splitting
operators [33]. Thus, QAOA often presents a challenging

U1

V1

U2

V2

U3

V3

U1

U1

V1

U2

U1

U1

V1

U2

V2

U1

U1

V1

Fig. 2. Quantum convolutional neural network on 8 qubits. The convolutional
layers consist of the generic two-qubit unitary gates Ui to be trained. The
pooling layers consist of the single-qubit gates Vj controlled by measurement
results.

compilation problem when we map a non-planar graph to
architectures laid across a 2D surface since non-local two-
qubit gates are essential [30].
Quantum Convolutional Neural Network (QCNN). Clas-
sifying many-body quantum states is a valuable and com-
putationally intensive problem in theoretical physics. QCNN
implements a quantum neural network that is NISQ-friendly
and avoids the common vanishing gradient problem during
training [31], [34]. Fig. 2 displays an 8-qubit QCNN, where
Ui and Vj are generic two- and single-qubit gates and the meter
with two vertical lines represents a measurement outcome
being used for control. Measurement of a qubit collapses its
corresponding area in the space vector, lessening the complex-
ity of the state. This process is similar to pooling in traditional
CNN, so the controlled-V gates perform the pooling layers in
QCNN and the U gates perform the convolution layers. The
connectivity inside QCNN reduces in a binary-tree fashion,
which poses interesting compilation problems. Although the
first convolution layer can be easily implemented with nearest
neighbor connections, non-nearest neighbor interactions are
necessary in the subsequent convolution layers. Note that
classically controlled-V gates do not need connection on the
quantum architecture.

IV. ARCHITECTURE SPACE

Superconducting qubits are one of the most promising
approaches towards scalable quantum computation. Different
superconducting quantum architectures support different qubit
connectivities. Qubit connectivity is defined by a coupling
graph G = (V,E). This coupling graph has both a vertex
v ∈ V that denotes a physical qubit and two vertices v, v′ that
only share an edge e ∈ E if two-qubit entangling operations
can be performed on physical qubits v and v′. For example,
Fig. 3a displays a coupling graph for a grid architecture with
16 physical qubits and 24 qubit connections, and Fig. 3c shows
a different coupling graph for a heavy-hexagon architecture
with 18 physical qubits and 18 qubit connections. Architecture
customization can be performed during the fabrication or
post fabrication. In order to customizing architectures in post
fabrication, one can construct programmable architectures. For

4

(a) (b)

(d)(c)

Fig. 3. Architecture space. The black vertices and edges are physical qubits
and fixed connections between physical qubits, respectively. The blue edges
are the flexible qubit connections in our architecture space. The gray vertices
and edges are parts of the heavy-hexagon architecture not included in the
heavy-hexagon architecture space.

example, the qubit connections can be realized by tunable-
coupler technology [16], which can turn off the superconduct-
ing qubit coupling via frequency adjustment, and thus, change
the qubit connectivity.

The quantum architecture space can be defined by a triple
(Gb, Ef , C), where Gb = (V,E) is a base coupling graph
with fixed edges. The flexible edge set Ef is the set of edges
that can be turned on, i.e., activated. Because activating some
edges simultaneously may be impractical due to physical and
fabrication constraints, C is the collision edge pair set such
that if (e, e′) ∈ C, then edge e and e′ cannot both be on at the
same time. For example, we are not allowed to enable edges
that cross the other edges due to the space capacity constraints
between qubits in the existing quantum hardware.

In this work, we focus on two families of existing quantum
architectures designed for scalable quantum error correction
code: the grid architecture (Fig. 3a), which is similar to those
used by Google [16], and the heavy-hexagon architecture
(Fig. 3c), which is similar to those used by IBM [35]. All ver-
tices and edges in Fig. 3c form a recurrent heavy-hexagon ar-
chitecture. The tiled layout of the heavy-hexagon architecture
is chosen to preserve the heavy-hexagon structure and have
the comparable physical qubit number to the grid architecture.
The black edges in Fig. 3c represent the base heavy-hexagon
architecture, also called fixed edges. These edges stand for
couplings between qubits that are fundamentally fixed and
cannot be modified. This constraint can come from practical
concerns or limitations in quantum system engineering. Note
that four degree-one vertices are included to preserve degree-
three vertices in the structure so that the degree-three vertices
can entangle with three different qubits.

The grid architecture search space is shown in Fig. 3b,
where the base coupling graph is denoted in black and the
flexible edge set is indicated in blue. A flexible edge is
constructed between two vertices if their Euclidean distance
is two and they are in different columns and rows. Therefore,
in the case we study here, the flexible edge set is all diagonal
edges. Due to fabrication concerns, all crossing edge pairs are

added to the collision edge pair set C.
The heavy-hexagon architecture search space is depicted

in Fig. 3d. The flexible edge set is constructed as follows.
First, we build the flexible vertical edges between non-adjacent
vertices in the same column. Note that there are no edges
between two degree-one vertices because both vertices are
outside the current rectangle. Then, we construct the flexible
edges between two vertices with distance two and in different
columns and rows.

Flexible edges in a coupling graph can be implemented by
injecting additional quantum control to enable or disable a
coupling. This is realizable in both superconducting qubits,
and in ion-trap qubit systems. The versatility provided by the
flexible edge architecture increases the range of applicable
domains for a given quantum architecture. However, adding
flexible edges can also induce higher overhead in the amount
of hardware engineering and cost. Therefore, the architecture
optimization framework proposed in this work will account
for the flexible edge and the fixed coupling edge differently
to demonstrate the advantages that can come with a flexible
coupling edge.

V. QUANTUM ARCHITECTURE OPTIMIZATION

Our domain-specific quantum architecture optimization
framework facilitates the performance improvement of NISQ
algorithms by adapting the quantum architecture to the quan-
tum circuits of the specific application. Our proposal integrates
the optimal layout synthesis into the subroutine of our ar-
chitecture optimization to guarantee efficiency, scalability and
performance.

To perform architecture optimization, we need to address
two challenges, flexible edge selection and large architecture
space. First, the optimality for the searched architecture is
affected by the flexible edge selection. Although activating
more flexible edges will decrease the compilation overhead, it
could introduce more crosstalk errors in to the circuit, which
might eventually eliminate the benefit of activating edges. For
hardware design, minimizing the number of activate flexible
edges is favorable; otherwise, it will be difficult to fabricate
and calibrate. In addition, deciding which set of flexible edges
to activate are important. Activating flexible edges at different
locations brings varied levels of improvement. Furthermore,
not all flexible edges can be activated at the same time due to
the fabrication limit. Therefore, it is crucial to select the set
of flexible edges that brings the most benefits to activate.

To guarantee the optimality, one naive approach for architec-
ture optimization is to exhaustively evaluate all architectures in
the search space using a layout synthesis tool and to select the
architecture with the highest estimated circuit fidelity. How-
ever, this approach is inefficient since the size of the search
space is exponential in that of the flexible edge set, e.g., 218

for the grid architecture in Fig. 3b. On top of this, architecture
evaluation requires a near-optimal or optimal layout synthesis
tool. Otherwise, sub-optimal compilation would falsely favor
some architectures, leading to bias in the evaluation results.
Previous implementations for optimal SWAP insertion have
been proposed, yet these approaches suffer from very high

5

space and time complexity [24], [36], [37]. Some heuristic
approaches have also been developed [18], [23], [38]–[43],
but have been shown to be far from optimal due to early
termination in search trees [22].

To address the aforementioned issues, we propose a novel
quantum architecture optimization algorithm that integrates
the optimal layout synthesis process into the architecture
optimization procedure. The key idea is to make the optimal
layout synthesizer automatically explore the architecture with
optimal synthesis results. We extend the layout synthesizer to
make it capable to use a limited number of flexible edges
during the compilation. In this way, the layout synthesizer can
automatically select the most beneficial flexible edges for the
compilation, and the architecture optimizer can recognize the
beneficial edges according to the layout synthesizer’s choice.
Therefore, we can avoid enumerating and evaluating all ar-
chitectures individually, and instead, our integrated algorithm
minimizes the number of layout synthesis invocations due to
a more efficient optimization. For example, a quantum circuit
of which compilation takes one hour on the grid architecture
in Fig 3b in one hour will require 218 hours to explore the
whole design space. This assumes no additional compilation
cost per flexible edge. However, according to our experiments,
our algorithm only needs a few hours to finish the optimization
process.

The recent layout synthesis tool OLSQ [44] is optimal in
terms of SWAP count and depth by formulating the layout
synthesis problem as an satisfiability modulo theory (SMT)
[45] problem. The SMT problem is a generalization of the
Boolean satisfiability problem by including the other first-
order theories e.g., equality reasoning and arithmetic. With
its strong expressive power, a wide range of applications,
e.g., bounded model checking, program analysis, and software
testing, can be formulated as SMT problems. A more coarse-
grained, transition-based implementation, referred to as TB-
OLSQ, is also developed to utilize an efficient variable encod-
ing to represent the layout synthesis solution space, including
both qubit mapping and SWAP insertion, and preserves opti-
mality in terms of SWAP insertion and near-optimal in terms
of depth. Furthermore, TB-OLSQ matches optimal results
on verifiable instances while outperforming leading heuristic
layout synthesis tools on gate count optimization. Since the
main benefit of customizing qubit connectivity is to reduce the
required number of inserted SWAP gates, achieving optimal
SWAP insertion is one of the most important objectives. With
good scalability and optimal compilation results, TB-OLSQ is
the choice of our layout synthesizer, which provides efficient
runtime, minimal SWAP count, and enables us to maximize
circuit fidelity in a scalable manner.

Given a quantum circuit consisting of single- and two-
qubit gates and an architecture space specified by the three-
tuple (Gb, Ef , C), our proposed algorithm outputs the optimal
architecture for the circuit and the layout synthesis results. The
three major stages consist of: (1) SMT variable and constraint
generation, (2) coarse-grained circuit moment optimization
and (3) iterative edge selection accounting for SWAP count
optimization. Fig. 4 illustrates the overall workflow. The
following subsections describe each stage in detail.

Iterative Edge Selection

Variable and Constraint Generation

Layout Synthesis ResultArchitecture

Quantum Circuit Architecture Space

SWAP Count Optimization

Activate flexible
edge number == Iter?

Success?

No
Increase the
coarse-grained
circuit limit

Yes. Iter = 0

Yes

No

Preprocess

Iter = Iter + 1

Coarse-Grained Circuit Depth Optimization

Fig. 4. Overview of our quantum architecture optimization flow.

A. Preprocessing

In order to generate variables and constraints for the flexible
edges in the search space, we first construct a gate dependency
list L from the input circuit to impose temporal constraints
such that gates acting on the same qubit cannot be executed
during the same circuit moment. Thus, the gate dependency
list is constructed by adding all gate pairs (g, g′) to L, where
g, g′ act on the same logical qubit and g should be executed
before g′. With the gate dependency list, we can then generate
constraints that enforce the correct gate execution order.

B. Variable and Constraint Generation

Following propocessing, we generate variables and con-
straints to formulate our problem as an SMT instance. We
utilize circuit-related variables and constraints conforming to
the TB-OLSQ formulation to encode the layout synthesis
problem, and architecture-related variables and constraints to
encode the architecture optimization problem. We use G1 to
denote the single-qubit gate set, G2 to designate the two-
qubit gate set, v ∈ V for physical qubits, and e ∈ E ∪ Ef

for qubit connections. Additionally, we define a initial upper
bound Tmax for the coarse-grained circuit depth. Henceforth,
for simplicity, circuit moments and depth will be assumed to
be coarse-grained in this section unless otherwise specified.

1) Variables: We create circuit-related variables for qubit
mapping, coarse-grained circuit moment index, space coordi-
nate, and SWAP insertion. For each logical qubit q and coarse-
grained circuit moment t, we define the map variable πt

q as
the mapping of the logical qubit q to the physical qubit v
at the coarse-grained circuit moment t. Note that the circuit
depth increases when the qubit mapping is changed, i.e., a
qubit mapping transition occurs, since a SWAP operation is
inserted. Therefore, the coarse-grained circuit depth is the
number of total transitions. Accordingly, gates acting on the
same qubits can be executed within the same coarse-grained

6

circuit moment, i.e., in between two adjacent transitions. Each
gate g has a space coordinate xg and moment tg indicating
that gate g is scheduled on xg at moment tg . If g ∈ G1,
then xg is some physical qubit v ∈ V . If g ∈ G2, then xg is
some edge e ∈ E ∪Ef . The boolean SWAP insertion variable
σt
k represents the application of a SWAP gate on edge ek at

moment t, if σt
k = 1. Then, we construct architecture-related

variables for the flexible edge activation. Each flexible edge
e ∈ Ef has a boolean variable ue, where ue = 1 if at least
one gate is scheduled to be executed on e.

2) Constraints: Program constraints consists of mapping,
dependency, SWAP insertion, and SWAP transformation con-
straints. Architecture constraints consist of flexible edge usage
and edge validity.
Mapping. For map variables in the same moment 0 ≤ t ≤
Tmax, we require πt

q ̸= πt
q′ so that logical qubits q ̸= q′ are

mapped to distinct physical qubits. Also, the qubit mapping
must be consistent with the gate mapping. For a gate g ∈ G1

acting on physical qubit v and circuit moment t, we have:

(xg == v) ∧ (tg == t) =⇒ (πt
q == v). (2)

For a gate g ∈ G2 acting on edge e = (v1, v2) ∈ E ∪Ef , we
have:

(xg == e) ∧ (tg == t) =⇒
(πt

q == v1 ∧ πt
q′ == v2) ∨ (πt

q == v2 ∧ πt
q′ == v1). (3)

Dependency. To maintain the gate execution order in the input
circuit and prevent collisions, we have tg ≤ tg′ for each pair
(g, g′) ∈ L.
SWAP Insertion. To avoid two SWAP gates σt

e, σt′

e′ from
overlapping a physical qubit, we have ¬σt

e∨¬σt
e′ so that these

two SWAP gates are in different circuit moments.
SWAP Transformation. A SWAP insertion requires two
additional constraints on the qubit mapping. First, the mapping
for the logical qubit q to the physical qubit v should not
change if no SWAP gate is inserted on any edge e ∈ Sv =
{(v, v′)|v′ ∈ V } in moment t:

[(πt
q == v) ∧

∧
e∈Sv

¬σt
e] =⇒ (πt+1

q == v). (4)

Second, the mapping for the logical qubit q to the physical
qubit v will change if a SWAP gate is inserted on one edge
e ∈ Sv in moment t:

(πt
q == v) ∧ σt

e =⇒ (πt+1
q == v′). (5)

Flexible edge usage. If there is one two-qubit gate g ∈ G2 or
a SWAP gate acting on edge e ∈ Ef , then ue = 1:∨

g∈G2

(xg == e) ∨
∨

0≤t≤Tmax

σt
e =⇒ ue. (6)

Edge validity. For each edge pair (e, e′) in the collision edge
pair set C, we have ¬(ue ∧ ue′) so that edge e and e′ are not
added to an architecture at the same time.

C. Coarse-grained Circuit Depth Optimization

The purpose of this stage is mainly to find the minimum
coarse-grained circuit depth for the base architecture, and in
doing so, we also detect whether or not the upper bound Tmax

is sufficiently large. Since the activation of flexible edges in Ef

increases the connectivity of the coupling graph, the number
of essential SWAP insertions could decrease as a result. For
this stage, however, we are only concerned with establishing a
baseline minimum depth without activating any edges, which
can be described with the constraint:∑

e∈Ef

ue ≤ α, (7)

where α is the number of activated flexible edges and set
to 0 for the baseline. Note that Eq. 7 can be extended to
the weighted sum over ue if the cost of activating distinct
flexible edges is different. The coarse-grained circuit depth
optimization can be performed via the constraint:∧

tg

(tg ≤ T), (8)

where T is the current circuit depth in consideration. We
minimize this depth by using a linear search strategy. We
initially set T = 0. If no feasible solution exists for the current
value of T , we increment by one and check the satisfiability
again until we find a solution. If we fail to find a feasible
solution for all T ≤ Tmax, we increase Tmax and regenerate
variables and constraints. Similarly to TB-OLSQ, we use the
Z3 SMT solver [46] to solve our problem. Z3 provides us
with two modes of execution: (1) check satisfiability only,
and (2) check satisfiability and minimize an objective. TB-
OLSQ uses mode 2, but we found the increase walltime cost
of this mode to be too expensive for our larger problems, so
we chose to implement the previously described optimization
routine around mode 1.

D. Iterative Edge Selection

During iterative edge selection, we activate a bounded
number of flexible edges while searching for the minimum
number of SWAP insertions per iteration. To achieve this, we
set α from Eq. 7 to i, where i is the current iteration index,
and then we perform the optimization by applying a constraint
using the SWAP count limit S:∑

0≤t≤T,e∈E∪Ef

σt
e ≤ S. (9)

We employ binary search to minimize S. The lower bound Sl

for S is zero-initialized while the upper bound Su is initialized
to the number of SWAP insertions from the previous stage.
Note that activating a flexible edge will never increase the
optimal SWAP count due to the increased qubit connectivity.
Then, for each iteration i, if a solution exists at the midpoint
S = ⌊(Sl+Su)/2⌋, then the upper bound Su is updated to S.
Otherwise, we update the lower bound Sl to S+1. The process
repeats until Sl ≥ Su. Then, we generate the layout synthesis
solution under S = Su. The optimization process ends if
the number of activated flexible edges in the architecture is

7

less than i or no SWAP gate is inserted. Both cases indicate
that activating more edges will not further benefit the circuit
fidelity. Since each iteration requires an invocation of the SMT
solver, we reduce the amount of duplicated work by utilizing
incremental solving, in which the previous effort from base
layout synthesis is used as the starting point for each iteration.
Finally, we output the set of optimized architectures using a
different number of activated flexible edges.

E. Complexity and Scalability

Our formulation contains QT+2|G1∪G2|+|E∪Ef |Tmax+
|Ef | variables, where Q is the number of logical qubits in
a circuit. Consider the fabrication limitations, the number
of edges is usually asymptotically linear to the number of
vertices. Thus, the variable number in our formulation is
O(|V | · Tmax + |G1 ∪ G2|). Note that the search space size
is exponential in the number of variables. Compared with the
variable number of TB-OLSQ [44], introducing architecture-
related variables do not increase the problem complexity.
With the incremental solving strategy, we reduce the total
solving time by preventing variable and constraint regeneration
and keeping the information learnt from the previous solving
process in the later solving process.

VI. EVALUATION METRICS

In this section, we introduce our evaluation method for
estimating the circuit performance of an architecture. Fig. 5
shows our evaluation workflow. Given a quantum circuit and
an architecture, we first perform layout synthesis to map the
circuit to the architecture. Then, when applicable, we apply
gate absorption, i.e. merging consecutive two-qubit gates, to
further optimize the circuit. In our study, there are four types
of gate pairs that can be merged: (1) two phase-splitting
operators, (2) one phase-splitting operator and one SWAP gate,
(3) two U4 gates, and (4) U4 gate and one SWAP gate. In
our case, the most frequent type is merging a SWAP gate
with some other gates. Therefore, the compilation results that
contain more SWAP gates are more likely to be improved
by gate absorption. For example, in the QAOA-8 compilation
results by OLSQ on the base heavy-hexagon architectures, up
to six gates can be absorbed. On average, we can absorb two
gates in each compilation result.

Next, gates are decomposed to the hardware-supported gates
and scheduled according to gate duration. In this work, we
use the Google Sycamore gate along with arbitrary single-
qubit gates as our hardware-supported gate set [16]. The gate
duration is 10ns for the Sycamore gate, 25ns for single-qubit
gates, and 4µs for measurements [47]. We schedule gates into
different circuit moments such that all gates within the same
moment can be executed simultaneously. Note that for gates
with short duration, the affected qubit will remain idle until
the next circuit moment.

Based on the gate scheduling, we can calculate the two-
qubit gate fidelity accounting for crosstalk error caused by
parallel gate execution and estimate the circuit fidelity using
our fidelity model. In the following sections, we will define
our crosstalk metric and circuit fidelity model. Notice that

Fidelity

Quantum Circuit Architecture

Layout Synthesis

Gate Absorption

Gate Scheduling

Gate Decomposition

Gate Fidelity Estimation

Circuit Fidelity Simulation

Fig. 5. Overview of our evaluation flow.

the crosstalk error included here is a type of constraints for
the underlying architecture optimization: each qubit cannot
have too many neighbors; otherwise, practical limitations
in classical control electronics will pose limitations on the
achievable fidelity of quantum operations. In addition, there
are potentially other constraints important to accommodate
during qubit architecture optimization. These additional con-
straints may be derived from fundamental limitations of the
underlying physical system. For example, for ion trap qubits,
the maximum number of fully connected qubits can be limited,
and for nitrogen-vacancy qubits, the available type of coupling
might not be limited; etc. The advantage of our framework lies
in the flexibility of SMT solvers for incorporating different
types of hard constraints during optimization.

A. Crosstalk Effect

Unwanted couplings between qubits introduce crosstalk
errors. The effect of the crosstalk error manifests as a de-
crease in circuit fidelity when quantum gates are operating in
parallel as opposed to in isolation. Crosstalk in most quantum
computing systems is electromagnetic in nature and falls into
two categories: classical crosstalk and quantum crosstalk. The
effect of classical crosstalk causes independent and identically
distributed (i.i.d.) errors across space due to shared electro-
magnetic fields. This happens at the control-level electronics.
For example, two control wires that are too close to each other
can cause control leakage as a result of flux crosstalk. The
effect of quantum crosstalk is more diverse because it can be
caused by various types of electromagnetic interaction, e.g.,
capacitive coupling, inductive coupling, and other secondary,
non-linear interactions in superconducting circuits.

We pay special attention to the mitigation of quantum
crosstalk errors due to two fundamental reasons. First, the
effect of quantum crosstalk can be classically hard to simulate
given its complex form and propagation dynamics. Second,
majority of the near-term quantum algorithms and long-term
quantum error correction algorithms are much more suscepti-
ble to crosstalk errors than to i.i.d gate errors [48], [49]. To
illustrate the detrimental effect of crosstalk, we take quantum

8

error correction as an example to show that the tolerence
against crosstalk can be much lower than independent errors.
This simple analysis is applicable to other NISQ algorithms
sharing similar circuit structures. In quantum error correction,
the tolerable level of two-body crosstalk error probability is
determined by comparing correlated error probability from
crosstalk with error coincidence from i.i.d gate errors: [48]

Pcrosstalk < P 2
ave, (10)

where Pave is the correctable average i.i.d gate error. If this
inequality is satisfied, two-body crosstalk errors become visu-
ally indistinguishable from i.i.d errors in its lower moments
of distribution. Such requirement derives from the assump-
tions in fault-tolerant computation that error propagate in a
probabilistic manner and will not accumulate and amplify
quantum-mechanically [50]. Inequality (10) shows that we
have to suppress crosstalk error much harder than single
gate errors to ensure that errors are within simulability and
control. For NISQ applications, the threshold above Pave can
change depending on specific application requirements based
on crosstalk error simulation.

Despite the distinct and diverse mechanisms of crosstalk,
we can systematically measure the average crosstalk effect by
comparing the fidelity of a quantum gate g when operated in
isolation Pg with that of a maximally parallel configuration
P p
g , where we use superscript p to denote parallel operation.

The maximally parallel configuration is specified according to
the hardware limitations, e.g., only quantum gates that do not
share common qubits can be executed in parallel. For example,
in the grid architecture, only one fourth of all two-qubit gates
can be operated in parallel due to the degree four nature of
the grid connectivity. Let the number of nearest neighboring
gates in such a maximally parallel configuration be N1, and
the number of the neighbor gates of distance i away be Ni,
where i ≤ nmax, which is a cutoff threshold beyond which
the crosstalk induced error is below the threshold defined in
Eq. 10. The exact value of nmax depends heavily on the
specific system of interest. For superconducting qubits, we
set nmax = 2 based on the quadratic decay of charge-charge
interaction, which is one of the leading sources of long-range
crosstalk in superconducting circuits.

To account for the distance-dependent nature of crosstalk,
we weigh the contribution of a neighbor with distance i by a
factor of ri ≤ 1. We can therefore define the crosstalk error
with the nearest neighbor gate as:

P 1
gct =

P p
g − Pg∑nmax

i=1 riNi
. (11)

The crosstalk error from the ith nearest neighboring gate can
be calculated by multiplying the decay factor: P i

gct = P 1
gctri.

In this work, we use ri = 1
10i−1 , Pg = 0.9%, and P 1

gct =
0.5% [16].

According to the above model, the fidelity of a two-qubit
gate g in a given circuit moment is then given by:

fg = 1− Pg −
∑
g′

P 1
gct −

∑
g′′

P 2
gct , (12)

Algorithm 1 GateFidelity(TS ,G)
Input: Two-qubit gate schedule TS and coupling graph G
Output: Two-qubit gate fidelity list L
1: construct distance-one edge list d1.[e] for each e ∈ E
2: construct distance-two edge list d2.[e] for each e ∈ E
3: L = []
4: for moment in TS
5: for g in moment
6: gate fidelity = 1 - Pg

7: for g′ in moment
8: if g′.pos ∈ d1[g.pos]
9: gate fidelity = gate fidelity - P 1

gct
10: else if g′.pos ∈ d2[g.pos]
11: gate fidelity = gate fidelity - P 2

gct
12: end if
13: end for
14: L.append(gate fidelity)
15: end for
16: end for
17: return L

where g′ and g′′ are the respective two-qubit gates of distance
one and two to g in the given circuit moment. In principle, we
can include crosstalk between both single-qubit and two-qubit
gates. However, for the modeling of superconducting qubits,
we can assume that executing single-qubit gates in parallel
does not induce crosstalk error.

Given a coupling graph G = (V,E) and a two-qubit
gate schedule specifying space-time coordinates, Algorithm 1
calculates the two-qubit gate fidelity. In lines 1–2, we construct
the distance-one and distance-two lists d1.[e] and d2.[e] for
each e ∈ E. An edge e′ ∈ E is added to d1.[e] (d2.[e])
if the shortest path from one vertex of e′ to one vertex of
e is one (two). Then, for each circuit moment, we calculate
the two-qubit gate fidelity by subtracting crosstalk errors from
concurrent distance-one and distance-two gates (lines 4–16),
and then output the two-qubit gate fidelity list L.

B. Overall Circuit Fidelity Estimation

For NISQ applications, circuit fidelity is an important metric
because it measures the success rate of the probabilistic
outcome. Circuit fidelity is influenced by qubit decoherence
and gate fidelity. Our fidelity model for an entire circuit is:

f = fg1
1 ×

∏
fg∈L

fg ×
∏
q∈Q

(1− 1

3
(
1

T1
+

1

Tϕ
)T q

idle), (13)

where f1 is the fidelity of single-qubit gate, g1 is the number
of single-qubit gates, and fg is the fidelity of each two-qubit
gate including crosstalk error. The last expression in Eq. 13 is
to model idling qubit error derived from [16], where T1 is the
thermal relaxation time, Tϕ is the pure dephasing time, and
T q
idle is the idling time for each qubit. Note that for QAOA

circuits, the qubit lifetimes are equal to the duration of the
circuit, whereas for QCNN, each qubit lifetime ends at its
time of measurement. We use f1 = 99.9%, T1 = 15µs, and
Tϕ = 25µs as existing technological factors [16].

VII. EVALUATION RESULTS

In this section, we present the results from our architecture
optimization framework for the following benchmarks: (1)

9

QAOA [29] phase-splitting operator for random 3-regular
graphs of size 8 and 10 generated by networkx version 2.4 [51],
and (2) QCNN [31] of size 8. First, we show the optimized
architectures for each benchmark. Next, we evaluate these
architectures using the metrics described in Section VI, and
compare our performance against architectures from different
layout synthesizers. Then, we analyze the effects of our opti-
mization for the heavy-hexagon and grid architectures. Finally,
we discuss the generalizability of our optimized architectures.

We implemented our proposed algorithm in Python 3.6,
and used the Z3’s Python API (v4.8.8.0) [46] for the SMT
optimization. All experiments were conducted on a Linux
machine with Intel Xeon E5-2680 CPUs at 2.40GHz and 64
GB RAM.

A. Optimized Architectures
We show the architectures generated by our framework

using the heavy-hexagon architecture space for QAOA and
QCNN circuits in Fig. 6. In general, the maximum value
for the number of activated flexible edges increases as the
number of essential SWAP insertion for compiling the circuit
on the base architecture increases. For example, QAOA-8
requires 8 SWAP gates and QAOA-10 requries 10 SWAP
gates to execute on the base heavy-hexagon architecture, so
the maximum number of activated flexible edges is 7 for
QAOA-8 and 9 for QAOA-10 on the heavy-hexagon-based
architectures. The optimized heavy-hexagon architectures for
QAOA-8 and QAOA-10 exhibit little inheritability, i.e. there
are few common activated flexible edges across architectures,
such as those in α = {3, 4, 6}. From this, we can observe
that although some flexible edges are activated across different
architectures, there is no common set of flexible edges that can
be recognized as the most beneficial across all architectures.
Additionally, when comparing Fig. 6a and Fig. 6b, we do
not observe any regularity for optimized architectures across
different QAOA circuits for the heavy-hexagon architecture
space. This lack of regularity underscores the difficulty in dis-
covering the optimal architecture through manual efforts and
stresses the importance of having an effective and automated
framework for architecture design.

The optimized grid-based architectures for QAOA and
QCNN circuits are shown in Fig. 7. Similarly to the heavy-
hexagon study, more flexible edges are activated to reduce the
need for SWAP gates as the circuit size increases. Furthermore,
the maximum value for α is smaller since there are inherently
more fixed edges than heavy-hexagon-based architectures. In
contrast to the optimized heavy-hexagon-based architectures,
the optimized grid-based architectures show high regularity,
i.e. flexible edges activated in the previous α iteration tend to
be activated again in the following. Furthermore, the optimized
architectures with α = 3 for QAOA-10 and QCNN-8 are the
same, which suggests that the optimal grid-based architectures
for different application instances may share similar structure
patterns.

B. Layout Synthesizer Comparison
To examine the fidelity improvement of architecture opti-

mization, we utilize four layout synthesizers to map circuits

𝛼 = 1 𝛼 = 2 𝛼 = 3

𝛼 = 4 𝛼 = 5 𝛼 = 6 𝛼 = 7
(a) Architectures for QAOA-8 with α ranging from 1 to 7.

𝛼 = 1 𝛼 = 2 𝛼 = 3 𝛼 = 4

𝛼 = 5 𝛼 = 6 𝛼 = 7 𝛼 = 8

𝛼 = 9
(b) Architectures for QAOA-10 with α ranging from 1 to 9.

𝛼 = 1 𝛼 = 2 𝛼 = 3 𝛼 = 4
(c) Architectures for QCNN-8 with α ranging from 1 to 4.

Fig. 6. Architectures optimized from heavy-hexagon architecture space, where
the blue edges are the activated flexible edges.

𝛼 = 1 𝛼 = 2 𝛼 = 3
(a) Architectures for QAOA-8 with α ranging from 1 to 3.

𝛼 = 1 𝛼 = 2 𝛼 = 3 𝛼 = 4 𝛼 = 5 𝛼 = 6
(b) Architectures for QAOA-10 with α ranging from 1 to 6.

𝛼 = 1 𝛼 = 2 𝛼 = 3
(c) Architectures for QCNN-8 with α ranging from 1 to 3.

Fig. 7. Architectures optimized from grid architecture space where the blue
edges are the activated flexible edges.

10

to our optimized architectures. We chose two heuristic lay-
out synthesizers, SABRE [42] from Qiskit 0.20.1 and t|ket⟩
1.1.0 [52], and two optimal layout synthesizers, OLSQ and
TB-OLSQ [44] using Z3 version 4.8.8.0.

1) QAOA: The compilation results for QAOA-8 and
QAOA-10 on the optimized heavy-hexagon-based architec-
tures are shown in Fig. 8 and Fig. 9, respectively. We execute
the circuit on the base architecture, i.e., α = 0, and use its
fidelity as the baseline. Note that activating more flexible edges
may introduce additional crosstalk noises into the circuit,
potentially eliminating benefits from increasing connectivity.
To analyze the factors causing fidelity changes, we calculate
the circuit fidelity without crosstalk errors by assuming all
fidelity values for two-qubit gates to be 1 − Pg . In Fig. 8,
the thin dashed lines represent fidelity without crosstalk errors
while the thick dashed lines represent fidelity with crosstalk
errors.

In general, the optimized architectures achieve higher fi-
delity than the baseline (Fig. 8, Fig. 9). Ignoring crosstalk
effects, the circuit fidelity compiled by OLSQ and TB-OLSQ
monotonically increases as flexible edges are activated. This
trend is in accordance with the assumption that activating more
flexible edges improves fidelity by reducing the number of
inserted SWAP gates. However, the circuit fidelities compiled
by SABRE do not show such a trend. We posit that these
underlying heuristic algorithms may fail to take advantage of
the flexible edges, and thus fail to improve the circuit fidelity.
Among all layout synthesizers, SABRE produces the lowest
fidelity and does not improve until five flexible edges are
activated for QAOA-8 and three for QAOA-10. In comparison,
circuit fidelity compiled by the other layout synthesizers show
improvement by only activating one flexible edge. Based on
this observation, we conclude that the advantage of architec-
ture optimization would be limited if the solution quality of a
layout synthesizer is unsatisfactory.

When accounting for crosstalk errors, the fidelity does not
monotonically increase for all layout synthesizers. As seen
in Fig. 8 and Fig. 9, some architectures with less activated
flexible edges outperform those with more. This decrease
in fidelity for architectures with large α is due to crosstalk
errors caused by the additional activated flexible edges. This
decline is more noticeable for OLSQ and TB-OLSQ since
these optimal layout synthesizers tend to minimize the circuit
depth by scheduling gates to be executed in parallel, resulting
in more severe crosstalk errors. For example, the architecture
with α = 4 has relatively lower fidelity than the architectures
with α = {3, 5}. This is because the compilation result on
the architectures with α = 4 has lower average two-qubit gate
fidelity and longer qubit idling time than that of architectures
with α = {3, 5} Therefore, for all figures, the fidelities for the
optimized architectures do not exhibit a consistent increasing
or decreasing trend due to this behavior. Additionally, we
note that through architecture optimization, the optimality gap
between t|ket⟩ and the optimal layout synthesizers shrinks for
some optimized architectures (Fig. 8).

Fig. 8 shows the fidelity improvement evaluated by OLSQ.
For QAOA-8, the fidelity peaks at the architecture with α = 5
and achieves a 21.1% improvement compared to the baseline.

0 1 2 3 4 5 6 7

0.3

0.4

0.5

0.6

0.7

OLSQ TB-OLSQ t|ket SABRE

Fig. 8. Fidelity for QAOA-8 on the heavy-hexagon architecture space. Thick
dashed lines are the fidelity estimates under crosstalk errors, and thin dashed
lines are those without.

0 1 2 3 4 5 6 7 8 9
0.1

0.2

0.3

0.4

0.5

0.6

OLSQ TB-OLSQ t|ket SABRE

Fig. 9. Fidelity for QAOA-10 on the heavy-hexagon architecture space.

From Fig. 9, we observe a larger improvement for QAOA-10
than for QAOA-8, where fidelity improvement peaks at 59.0%
for the architecture with α = 8.

Fig. 10 and Fig. 11 illustrate the results for QAOA compiled
for the optimized grid-based architectures. Similarly to before,
Fig. 10 and Fig. 11 also shows that sub-optimal layout
synthesizers cannot fully utilize the advantage of architecture
optimization. Likewise, the fidelity improvement from archi-
tecture optimization on grid-based architectures is also affected
negatively by increases in crosstalk errors. The optimal grid-
based architectures for QAOA-8 and QAOA-10 are those with
α = 1 and α = 4, which improve circuit fidelity by 3.1%
and 14.4%, respectively (Fig. 10, Fig. 11). Compared to the
heavy-hexagon architecture space, optimization on grid-based
architectures achieves less fidelity improvement in this case.
The first reason is that the connectivity of the base grid
architecture can support the necessary connections for QAOA
since these circuits require only three SWAP gates on the base
grid architecture. Second, the dense connectivity in grid-based
architecture leads to more severe crosstalk errors, which can
eliminate the benefit of architecture optimization.

2) QCNN: We present the evaluation results for QCNN-
8 in Fig. 12 and Fig. 13. Unlike the results from QAOA,
we observe that an increase in crosstalk error due to the
activation of more flexible edges does not greatly affect
relative performance since QCNN-8 is dominated by qubit
idling error from measurement-controlled gates. With multiple
pooling layers, qubits experience long idling times, which is
ultimately detrimental to the circuit fidelity.

11

0 1 2 30.40

0.45

0.50

0.55

0.60

OLSQ TB-OLSQ t|ket SABRE

Fig. 10. Fidelity for QAOA-8 on the grid architecture space.

0 1 2 3 4 5 6
0.35

0.40

0.45

0.50

0.55

OLSQ TB-OLSQ t|ket SABRE

Fig. 11. Fidelity for QAOA-10 on the grid architecture space.

The peak performance for optimized heavy-hexagon-based
architectures is 10.9% with α = 2 (Fig. 12). The fidelity for
the heavy-hexagon-based architecture with α = 3 is lower
than the others due to the long idling time T q

idle ≈ 10.455µs
while the idling time for the others is around 9µs. For the
grid-based architectures, the architecture with α = 2, as seen
in Fig. 7c, is the optimal architecture with a 604.8% fidelity
improvement.

Note that the duration of operations scheduled in the same
circuit moment may be different. Those qubits whose opera-
tions are finished first will not proceed to the next operations
until all operations scheduled in the same circuit moment are
finished. Nevertheless, when scheduling gates, the compilers
assume duration for all gates to be the same. Therefore,
operations with different duration may be scheduled in the
same circuit moment. For QCNN-8, because the duration of
measurement operations is much longer than that of the other
operations, scheduling measurement operations in different
circuit moments results in long idling time, which accounts
for the performance gap between OLSQ and TB-OLSQ.
Notice that such limitation is unique to superconducting qubit
architecture under the consideration, and not inherent to the
quantum application or our optimization algorithm.

C. Architecture Space Comparison

To study different architecture spaces, we compare the per-
formance of optimized grid-based and heavy-hexagon-based
architectures evaluated on QAOA and QCNN circuits. We use
OLSQ to perform layout synthesis since this produced the best
solution quality in the previous experiments.

0 1 2 3 4
0.000

0.005

0.010

0.015

0.020

OLSQ TB-OLSQ t|ket SABRE

Fig. 12. Fidelity for QCNN-8 on the heavy-hexagon architecture space.

0 1 2 30.000

0.005

0.010

0.015

0.020

OLSQ TB-OLSQ t|ket SABRE

Fig. 13. Fidelity for QCNN-8 on the grid architecture space.

1) QAOA: Fig. 14 displays the evaluation results for QAOA
circuits. The results in Fig. 14a and Fig. 14b indicate that by
activating two flexible edges, heavy-hexagon-based architec-
tures can outperform the base grid architecture. In addition,
although the base grid architecture can achieve better circuit
fidelity than the base heavy-hexagon architecture due to its
dense qubit connectivity, architecture optimization can reduce
the performance gap and can even yield a higher fidelity for
heavy-hexagon-based architectures, as seen in Fig. 14a.

When ignoring crosstalk error, the fidelity for grid-based
architectures is greater than or equal to that of heavy-
hexagon-based architectures, which matches our expectation
that higher connectivity enables more gate parallelization,
reducing the number of necessary SWAP insertions. However,
with crosstalk error, high connectivity can harm the fidelity
(Fig. 14a). Therefore, we believe that crosstalk error has
a significant and detrimental impact on high connectivity
architectures and is the main reason that optimized heavy-
hexagon-based architectures can outperform optimized grid-
based counterparts.

2) QCNN: The evaluation results for QCNN-8 are shown
in Fig. 15. The performance for grid-based architectures is
worse than that of heavy-hexagon-based architectures due to
the dominating qubit idling time and the crosstalk errors.
According to our experimental results, the average idling
time is 9.118µs for the base heavy-hexagon architecture and
11.125µs for the base grid architecture, which is 1.22X longer.

D. Cross Design Evaluation
To measure the generalizability of our approach, we com-

piled different circuits of the same application onto the same

12

0 1 2 3 4 5 6 7

0.50

0.55

0.60

0.65

Heavy-hexagon Grid

(a) QAOA-8. Thick dashed lines are the fidelity estimates
under crosstalk errors, and thin dashed lines are those without.

0 1 2 3 4 5 6 7 8 9
0.35

0.40

0.45

0.50

Heavy-hexagon Grid

(b) QAOA-10

Fig. 14. Evaluation results for QAOA circuits on both architecture spaces.
Horizontal dotted lines represent the maximal fidelity values for the respective
spaces.

0 1 2 3 4

0.005

0.010

0.015

Heavy-hexagon Grid

Fig. 15. Evaluation results for QCNN-8 on both architecture spaces. Hor-
izontal dotted lines represent the maximal fidelity values for the respective
space.

optimized architecture using OLSQ to perform layout syn-
thesis. In this experiment, we selected the heavy-hexagon-
based and grid-based architectures optimized for the QAOA-8
circuit used in Section VII-A (target circuit) as an example
for demonstration, and utilized the other thirty random QAOA
graphs of size 8 for evaluation.

The evaluation results for heavy-hexagon-based and grid-
based architectures are shown in Fig. VII-D and Fig. 17,
which depict the fidelity improvement for the target circuit
and the average fidelity of in other 30 circuits. The evaluation
results indicate that the optimized domain-specific architec-
tures achieve higher fidelity than that of the base architecture,
i.e., the architecture with α = 0. These results demonstrate the

0 1 2 3 4 5 6 7
0%

5%

10%

15%

20%

Target circuit Geomean

Fig. 16. Cross design evaluation on the heavy-hexagon architecture space for
QAOA graphs of size 8.

0 1 2 3
0%

2%

4%

6%

Target circuit Geomean

Fig. 17. Cross design evaluation on the grid architecture space for QAOA
graphs of size 8.

generality of our optimized architectures. Although the heavy-
hexagon-based and grid-based architectures are optimized for a
given circuit, the other circuits of similar type and size can also
benefit from the performance gain using the optimized archi-
tectures. In conclusion, we can achieve 22.7% improvement on
the heavy-hexagon-based architectures and 6.7% improvement
on the grid-based architectures for the non-target circuits using
the optimized architectures.

VIII. FUTURE DIRECTIONS

In this study, we evaluated our methodology to search for
optimal architectures for a specific quantum circuit. Through
our evaluation, we discovered that these optimized archi-
tectures can still demonstrate fidelity improvements across
different instances under the same application domain. Our
future work will continue generalizing our framework to a
wider range of architecture types and applications. Rather
than targeting one specific circuit for optimization, we can
aim to design optimal architectures for a family of quantum
circuits under a given application domain. This would allow
us to maximize the average performance of our optimized
architectures across different application instances. In this
work, we have benchmarked our framework on quantum
optimization algorithm and quantum machine learning. Our
framework are not restricted to these domains and can be also
applied to improve the performance of variational quantum
algorithms [53] and quantum chemistry [54]. Additionally, we
can test our optimized architectures on the application-oriented

13

benchmarks [55], [56], which provides a great performance
evaluation for domain-specific architectures.

We can generalize our current approach to different ap-
plication domains through multi-objective optimization while
providing performance guarantees to each target domain. This
is relevant for practical application, in which only a limited
number of architectures can be realized due to fabrication
overhead. When generalizing our framework to take a set
of circuits as inputs, we can assign independent compil-
ers from a portfolio of compilers to each circuit instance
while sharing architecture parameters for joint optimization.
Combining our current framework with the aforementioned
optimization schemes will allow us to develop a two-stage
architecture optimization flow. In the first stage, the domain-
specific architecture optimization, our goal would be to design
the lower-level architecture, such as the locations of tunable
coupling edges. The optimization in this stage focuses on
improving the architecture performance towards a family of
application domains. In the second stage, the instance-specific
architecture optimization, our goal would be designing higher-
level, or control-level architecture, such as which coupling
edges to activate for which parts of a quantum circuit. Here,
the optimization targets a specific quantum circuit of interest
and determines the architecture parameters that can change
depending on the quantum controls. With this two-stage de-
sign, we can fully utilize the power of quantum computing
by achieving high circuit fidelity on a fully customizable
architecture.

An orthogonal direction is to improve the scalability of
our SMT-based approach. Our current implementation can
be applied to optmize near-term quantum architectures by
directly taking the whole layout as input or adopting the tiling
strategy, which focuses on optimizing a tiled layout with the
goal to design the optimal patterns that can be repeated to
constitute the larger layout. With either approach, it would
be beneficial to further improve the scalability. One possible
acceleration method is to utilize different encoding methods,
e.g., uninterpreted functions and bit-vectors, which have been
shown can achieve significant speedup [57].

IX. CONCLUSION

In this paper, we proposed and implemented the first
domain-specific quantum architecture optimization framework
that integrates quantum circuit compilation into architecture
optimization in order to improve the fidelity of quantum
applications. We formulated the architecture optimization as
a constraint satisfication problem to guarantee the output per-
formance. Under this framework, we presented an algorithm
to search for the optimal architecture for circuit compilation
under hardware-specific constraints. To efficiently evaluate
the given quantum architecture, we proposed a quantum
architecture evaluation flow that approximates exact circuit
fidelity with a linear fidelity cost function. More specifically,
we include an analytical crosstalk error model to account
for realistic performance impairment due to quantum control
crosstalks. Our evaluation shows 59% fidelity improvement
on average for a 10-qubit QAOA MAXCUT circuit on the

heavy-hexagon-based architecture and a 14% improvement
on the grid-based architecture. For an 8-qubit QCNN circuit,
architecture optimization improves fidelity by 11% on the
heavy-hexagon-based architecture and 605% on the grid-based
architecture. These results demonstrate the large amount of
untapped potential in traditional quantum architecture, which
can be taken advantage of under our domain-specific architec-
ture optimization framework. For example, the heavy hexagon
architecture is commonly considered to be unfriendly for
NISQ application due to its lack of connectivity, but with
even the modest modification of adding two flexible coupling
edges, a significant fidelity improvement can be achieved for
the QAOA application.

Our results showed that under a scalable and automated
design and evaluation flow, the crafted quantum architectures
can be superior to the manually-designed architectures for a
given application domain of interest. In addition, our proposed
architecture optimization framework is general and versatile.
Although we focused on the superconducting qubit, this frame-
work is directly applicable to other types of qubits, e.g., the
trapped-ion qubit and neutral-atom qubits. Moreover, the op-
timization objectives in our architecture optimization flow can
be adapted to account for changing requirements in quantum
applications. Lastly, the definition of architecture space can
be extended beyond a qubit coupling graph. For example,
our architecture space can contain not only the adjustable
couplings between a fixed number of qubits, but the qubit
number as well. The domain-specific architecture optimization
framework proposed in this work opens technology pathways
for an automated architecture design process and provides
the essential toolbox for research efforts in developing large-
scale quantum hardware for both general and special purpose
quantum computation.

ACKNOWLEDGMENT

This work is partially supported by contributions from mul-
tiple industrial sponsors, including Intel, NEC, and Synopsys.

REFERENCES

[1] C. Zhang et al., “Caffeine: Toward uniformed representation and ac-
celeration for deep convolutional neural networks,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 38,
no. 11, pp. 2072–2085, 2018.

[2] N. Jouppi, “Google supercharges machine learning tasks with tpu custom
chip,” Google Blog, May, vol. 18, no. 1, 2016.

[3] X. Wei, Y. Liang, X. Li et al., “TGPA: Tile-grained pipeline architecture
for low latency CNN inference,” in 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), Nov 2018, pp. 1–8.

[4] H. Sharma, J. Park, N. Suda et al., “Bit fusion: Bit-level dynamically
composable architecture for accelerating deep neural networks,” in
Proceedings of the 45th Annual International Symposium on Computer
Architecture. IEEE Press, 2018, pp. 764–775.

[5] Y. S. Shao et al., “Simba: Scaling deep-learning inference with multi-
chip-module-based architecture,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. New York,
NY, USA: Association for Computing Machinery, 2019, pp. 14–27.

[6] A. Sohrabizadeh et al., “End-to-end optimization of deep learning
applications,” in Proceedings of the 2020 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. New York, NY, USA:
Association for Computing Machinery, 2020, pp. 133–139.

14

[7] Y. Turakhia et al., “Darwin: A genomics co-processor provides up to
15,000x acceleration on long read assembly,” in Proceedings of the
Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems. New York, NY, USA:
Association for Computing Machinery, 2018, pp. 199–213.

[8] L. Guo et al., “Hardware acceleration of long read pairwise overlapping
in genome sequencing: A race between FPGA and GPU,” in 2019 IEEE
27th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), April 2019, pp. 127–135.

[9] T. J. Ham et al., “Genesis: A hardware acceleration framework for
genomic data analysis,” in 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), May 2020, pp. 254–267.

[10] M. Lo, Z. Fang, J. Wang et al., “Algorithm-hardware co-design for
BQSR acceleration in genome analysis toolkit,” in 2020 IEEE 28th
Annual International Symposium on Field-Programmable Custom Com-
puting Machines (FCCM), May 2020, pp. 157–166.

[11] J. Ouyang, S. Lin, S. Jiang et al., “SDF: Software-defined flash for web-
scale internet storage systems,” in Proceedings of the 19th international
conference on Architectural support for programming languages and
operating systems, 2014, pp. 471–484.

[12] A. Putnam et al., “A reconfigurable fabric for accelerating large-scale
datacenter services,” in 2014 ACM/IEEE 41st International Symposium
on Computer Architecture (ISCA). IEEE, 2014, pp. 13–24.

[13] J. Ouyang et al., “Extending the Moore’s law by exploring new data
center architecture,” in Proceedings of the 2016 International Symposium
on Low Power Electronics and Design, 2016, pp. 148–149.

[14] A. M. Caulfield, E. S. Chung, A. Putnam et al., “A cloud-scale
acceleration architecture,” in 2016 49th Annual IEEE/ACM international
symposium on microarchitecture (MICRO). IEEE, 2016, pp. 1–13.

[15] N. Samardzic, W. Qiao, V. Aggarwal et al., “Bonsai: High-performance
adaptive merge tree sorting,” in 2020 ACM/IEEE 47th Annual Interna-
tional Symposium on Computer Architecture (ISCA), 2020, pp. 282–294.

[16] F. Arute et al., “Quantum supremacy using a programmable supercon-
ducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, Oct. 2019.

[17] A. Deb, G. W. Dueck, and R. Wille, “Towards Exploring the Potential
of Alternative Quantum Computing Architectures,” in 2020 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE). Grenoble,
France: IEEE, Mar. 2020, pp. 682–685.

[18] P. Murali, N. M. Linke et al., “Full-stack, real-system quantum computer
studies: Architectural comparisons and design insights,” in Proceedings
of the 46th International Symposium on Computer Architecture - ISCA
’19. Phoenix, Arizona: ACM Press, 2019, pp. 527–540.

[19] G. Li, Y. Ding, and Y. Xie, “Towards efficient superconducting quan-
tum processor architecture design,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 1031–1045.

[20] R. R. Tucci, “An introduction to cartan’s kak decomposition for qc
programmers,” arXiv preprint quant-ph/0507171, 2005.

[21] IBM quantum experience. [Online]. Available: https://
quantum-computing.ibm.com/

[22] B. Tan and J. Cong, “Optimality study of existing quantum computing
layout synthesis tools,” IEEE Transactions on Computers, Jul. 2020.

[23] D. Maslov, S. M. Falconer, and M. Mosca, “Quantum circuit placement,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 27, no. 4, pp. 752–763, Apr. 2008.

[24] M. Y. Siraichi, V. F. dos Santos et al., “Qubit allocation,” in Proceedings
of the 2018 International Symposium on Code Generation and Optimiza-
tion - CGO 2018. Vienna, Austria: ACM Press, 2018, pp. 113–125.

[25] C. Chamberland, G. Zhu, T. J. Yoder, J. B. Hertzberg, and A. W.
Cross, “Topological and subsystem codes on low-degree graphs with
flag qubits,” Physical Review X, vol. 10, no. 1, p. 011022, Jan. 2020.

[26] J. Haferkamp, P. Faist, N. B. Kothakonda et al., “Linear growth of
quantum circuit complexity,” Nature Physics, pp. 1–5, 2022.

[27] M. J. Bremner, R. Jozsa, and D. J. Shepherd, “Classical simulation of
commuting quantum computations implies collapse of the polynomial
hierarchy,” Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences, vol. 467, no. 2126, pp. 459–472, 2011.

[28] S. Boixo, S. V. Isakov et al., “Characterizing quantum supremacy in
near-term devices,” Nature Physics, vol. 14, no. 6, pp. 595–600, 2018.

[29] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.

[30] F. Arute, K. Arya, R. Babbush, D. Bacon et al., “Quantum approximate
optimization of non-planar graph problems on a planar superconducting
processor,” Nature Physics, vol. 17, no. 3, pp. 332–336, 2021.

[31] I. Cong, S. Choi, and M. D. Lukin, “Quantum convolutional neural
networks,” Nature Physics, vol. 15, no. 12, pp. 1273–1278, Dec. 2019.

[32] F. Glover, G. Kochenberger, and Y. Du, “A tutorial on formulating and
using qubo models,” arXiv preprint arXiv:1811.11538, 2018.

[33] R. Herrman, J. Ostrowski, T. S. Humble, and G. Siopsis, “Lower bounds
on circuit depth of the quantum approximate optimization algorithm,”
Quantum Information Processing, vol. 20, no. 2, pp. 1–17, 2021.

[34] A. Pesah, M. Cerezo et al., “Absence of Barren Plateaus in Quantum
Convolutional Neural Networks,” Physical Review X, vol. 11, no. 4, p.
041011, Oct. 2021.

[35] IBM, “The IBM Quantum heavy hex lattice,” 2021. [Online]. Available:
https://research.ibm.com/blog/heavy-hex-lattice

[36] R. Wille, L. Burgholzer, and A. Zulehner, “Mapping quantum circuits
to ibm qx architectures using the minimal number of swap and h
operations,” in 2019 56th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2019, pp. 1–6.

[37] R. Wille, A. Lye, and R. Drechsler, “Optimal swap gate insertion for
nearest neighbor quantum circuits,” in 2014 19th Asia and South Pacific
Design Automation Conference (ASP-DAC). IEEE, 2014, pp. 489–494.

[38] A. Ho and D. Bacon. (2018, Jul.) Announcing Cirq: An open
source framework for NISQ algorithms. [Online]. Available: https://ai.
googleblog.com/2018/07/announcing-cirq-open-source-framework.html

[39] IBM. (2018) Qiskit. [Online]. Available: https://qiskit.org/
[40] A. Zulehner, A. Paler, and R. Wille, “Efficient mapping of quantum

circuits to the IBM QX architectures,” in 2018 Design, Automation &
Test in Europe Conference & Exhibition (DATE). Dresden, Germany:
IEEE, Mar. 2018, pp. 1135–1138.

[41] S. Sivarajah, S. Dilkes, A. Cowtan et al., “t|ket⟩: A retargetable compiler
for NISQ devices,” Quantum Science and Technology, Apr. 2020.

[42] G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem
for NISQ-era quantum devices,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems. Providence, RI, USA: ACM Press,
2019, pp. 1001–1014.

[43] P. Murali, A. Javadi-Abhari, F. T. Chong, and M. Martonosi, “Formal
constraint-based compilation for noisy intermediate-scale quantum sys-
tems,” Microprocessors and Microsystems, vol. 66, pp. 102–112, 2019.

[44] B. Tan and J. Cong, “Optimal layout synthesis for quantum comput-
ing,” in 2020 IEEE/ACM International Conference On Computer Aided
Design (ICCAD). IEEE, 2020, pp. 1–9.

[45] C. Barrett and C. Tinelli, Satisfiability Modulo Theories. Cham:
Springer International Publishing, 2018, pp. 305–343.

[46] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems. Berlin,
Heidelberg: Springer, 2008, pp. 337–340.

[47] Google Quantum AI. (2021) Quantum computer datasheet. [Online].
Available: https://quantumai.google/hardware/datasheet/weber.pdf

[48] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, “Topological quantum
memory,” Journal of Mathematical Physics, vol. 43, no. 9, pp. 4452–
4505, 2002.

[49] J. Kattemölle and G. Burkard, “Effects of correlated errors on
the quantum approximate optimization algorithm,” arXiv preprint
arXiv:2207.10622, 2022.

[50] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge, United Kingdom:
Cambridge University Press, 2010.

[51] A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

[52] A. Cowtan, S. Dilkes, R. Duncan et al., “On the qubit routing problem,”
arXiv preprint arXiv:1902.08091, 2019.

[53] A. Peruzzo et al., “A variational eigenvalue solver on a photonic quantum
processor,” Nature communications, vol. 5, no. 1, pp. 1–7, 2014.

[54] A. Aspuru-Guzik et al., “Simulated quantum computation of molecular
energies,” Science, vol. 309, no. 5741, pp. 1704–1707, 2005.

[55] T. Lubinski et al., “Application-oriented performance benchmarks for
quantum computing,” arXiv preprint arXiv:2110.03137, 2021.

[56] T. Tomesh, P. Gokhale, V. Omole, G. S. Ravi, K. N. Smith, J. Viszlai, X.-
C. Wu, N. Hardavellas, M. R. Martonosi, and F. T. Chong, “Supermarq:
A scalable quantum benchmark suite,” in 2022 IEEE International Sym-
posium on High-Performance Computer Architecture (HPCA). IEEE,
2022, pp. 587–603.

[57] N. Bjørner et al., “Supercharging plant configurations using z3,” in Proc.
of the 18th International Conference on Integration of Constraint Pro-
gramming, Artificial Intelligence, and Operations Research (CPAIOR),
Jul. 2021.

https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/
https://research.ibm.com/blog/heavy-hex-lattice
https://ai.googleblog.com/2018/07/announcing-cirq-open-source-framework.html
https://ai.googleblog.com/2018/07/announcing-cirq-open-source-framework.html
https://qiskit.org/
https://quantumai.google/hardware/datasheet/weber.pdf

15

Wan-Hsuan Lin received a B.S. in Electrical En-
gineering from National Taiwan University (NTU),
Taipei, Taiwan, in 2021. She is currently pursuing
a Ph.D. degree in Computer Science with the Uni-
versity of California, Los Angeles, CA, USA. Her
current research interest focuses on design automa-
tion for quantum computing.

Bochen Tan received the B.S. degree in electrical
engineering from Peking University in 2019, and the
M.S. degree in computer science from University of
California, Los Angeles in 2022. He is currently a
graduate student researcher at UCLA focusing on
design automation for quantum computing.

Murphy Yuezhen Niu is a senior research scientist
in Google Quantum AI team. She obtained Ph.D. in
physics from MIT, and B.S. in physics from Peking
University. Her research has focused on applying
machine learning methods to quantum optimization,
calibration, system learning, and quantum algorithm
designs. Murphy leads the theoretical effort in mod-
eling, calibration, mitigation, and simulation of cor-
related errors in large-scale superconducting qubit
systems at Google. Murphy is the recipient of Claude
E. Shannon Research Award from MIT RLE.

Jason Kimko received his B.S. in Computer Science
and Mathematics from the College of William &
Mary in 2018. He has previously helped main-
tain and develop a massively parallel, multiphysics
simulation code at Lawrence Livermore National
Laboratory. Currently, he is pursuing a Ph.D. in
Computer Science at the University of California,
Los Angeles. His research interests lie in the devel-
opment of performant codes through parallelization
and hardware acceleration.

Jason Cong (Fellow, IEEE) received a BS degree in
Computer Science from Peking University, Beijing,
China, in 1985, and bath an MS and a PhD in
Computer Science from the University of Illinois
at Urbana-Champaign, Champaign, Illinois, in 1987
and 1990, respectively. Currently, he is a (and a
former chair) with the UCLA Computer Science
Department, with a joint appointment from the Elec-
trical Engineering Department, the director of Center
for Domain-Specific Computing (CDSC), and the
director of VLSI Architecture, Synthesis, and Tech-

nology (VAST) Laboratory. His research interests include novel architectures
and compilation for customizable computing, design automation for VLSI
systems and other emerging technologies, such as quantum computing and
highly scalable algorithms. He has more than 500 publications in these areas,
including 16 best paper awards, three ten-year most influential paper awards,
and one paper inducted into the FPGA and Reconfigurable Computing Hall
of Fame. He was elected to an ACM fellow in 2008 and a member of the
National Academy of Engineering in 2017.

	 Introduction
	Background
	Qubits, Quantum Gates, and Quantum Circuits
	Logic and Layout Synthesis

	NISQ Applications
	Architecture Space
	Quantum Architecture Optimization
	Preprocessing
	Variable and Constraint Generation
	Variables
	Constraints

	Coarse-grained Circuit Depth Optimization
	Iterative Edge Selection
	Complexity and Scalability

	Evaluation Metrics
	Crosstalk Effect
	Overall Circuit Fidelity Estimation

	Evaluation Results
	Optimized Architectures
	Layout Synthesizer Comparison
	QAOA
	QCNN

	Architecture Space Comparison
	QAOA
	QCNN

	Cross Design Evaluation

	Future Directions
	Conclusion
	References
	Biographies
	Wan-Hsuan Lin
	Bochen Tan
	Murphy Yuezhen Niu
	Jason Kimko
	Jason Cong (Fellow, IEEE)

