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Abstract—Topological quantum error correction (TQEC) is
promising for scalable fault-tolerant quantum computation. The
required resource of a TQEC circuit can be modeled as its
space-time volume of a three-dimensional geometric description.
Implementing a quantum algorithm with a reasonable physical
qubit number and computation time is challenging for large-
scale complex problems. Therefore, it is desirable to minimize the
space-time volume for large-scale TQEC circuits. Previous work
proposed bridge compression, which can significantly compress
a TQEC circuit, but it was performed manually. This paper
presents the first automated tool that can perform bridge com-
pression on a large-scale TQEC circuit. Our proposed algorithm
applies the bridge compression technique to compactify TQEC
circuits with modularization. Besides, we offer a time-ordering-
aware 2.5D placement for compacting TQEC circuits and sat-
isfying time-ordered measurement constraints. On the other
hand, we suggest friend net-aware routing to effectively reduce
the required routing resource under topological deformation.
Compared with the state-of-the-art work, experimental results
show that our proposed algorithm can averagely reduce space-
time volumes by 84%.

Index Terms—Physical Design, Topological Quantum Error
Correction, Bridge Compression, Quantum Design Automation,
Quantum Computing, Braided Quantum Circuit, Space-time
Volume Minimization.

I. INTRODUCTION

Quantum computing has attracted much attention in recent
years due to its capabilities in achieving substantial speedup on
several classes of problems (e.g., factorization [1] and unstruc-
tured database search [2]) that are considered intractable in
classical computing. However, large-scale quantum computing
is challenging because quantum devices could suffer from
significant noise from the environment and may thus produce
faulty results. Therefore, fault-tolerant quantum circuits are
needed for the scalability and reliability of quantum comput-
ing.
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Fig. 1. (a) Surface code. (b) Z stabilizer. (c) X stabilizer.

The topological quantum error correction (TQEC) scheme is
promising for scalable fault-tolerant quantum computation [3],
[4]. Based on the Raussendorf code [5], quantum informa-
tion is encoded into topological cluster states in a three-
dimensional (3D) lattice structure [6] consisting of physical
qubits. In the surface code [3], physical qubits are placed
in a two-dimensional (2D) surface, as shown in Figure 1(a).
Error correction of the quantum system is performed by peri-
odically measuring four-qubit operators, known as stabilizers.
Figure 1(b) and Figure 1(c) show a Z stabilizer and an X
stabilizer respectively. Quantum computation in the surface
code is achieved by manipulating so-called defects, specific
contiguous regions where the stabilizers are turned off in the
lattice. According to the type of stabilizers that are turned off,
a defect is either primal (X) or dual (Z).

Most encoded logical operations in the surface can be
performed by moving defects around each other, and defect
movement is achieved by turning off the stabilizers in the new
regions and then turning on the stabilizers in the old regions.
Such movements in a 2D space can be divided into time slices.
By stacking these 2D time slices according to their timing, the
3D diagram of defects can represent a TQEC circuit. Geomet-
ric description is a 3D visual representation in the surface
code, which describes the qubit initialization/measurement
(I/M), the defect configuration, and the positions of state
injections and state distillation boxes [7]. There are two kinds
of bases: X-basis and Z-basis. The basis vectors used for X-
basis (Z-basis) are |+⟩ and |−⟩ (|0⟩ and |1⟩). In a geometric
description, we use geometric components to represent qubit
I/M [7], as shown in Figure 2. We use red cuboids and
blue cuboids to represent primal defects and dual defects
respectively in a 3D space. Figures 2(a) and (b) represent
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Fig. 2. The components used in geometric descriptions. (a) X-
basis I/M for dual defects. (b) Z-basis I/M for dual defects. (c) Z-
basis I/M for primal defects. (d) X-basis I/M for primal defects. (e)
State injection to primal defects. (f) Generalized representation for
initialization, measurement, and state injection.

(b)(a)

Primal defect Dual defectI/M

𝑐𝑖

𝑡𝑖

𝑐𝑜

𝑡𝑜

𝑐𝑖

𝑡𝑖

𝑐𝑜

𝑡𝑜

Time

Fig. 3. (a) A CNOT gate. (b) A logical primal-primal CNOT gate.

X-basis and Z-basis I/M for dual defects respectively. Fig-
ures 2(c) and (d) represent Z-basis and X-basis I/M for primal
defects respectively. Figure 2(e) represents state injections for
|Y ⟩ or |A⟩ initialization. For generalization, a white cube
represents the operations of initialization, measurement, and
state injection, as shown in Figure 2(f).

In the surface code, a logical qubit is formed by a pair
of same-type defects. To implement a logical primal-primal
controlled-NOT (CNOT) gate whose logical input and output
qubits are encoded in primal defects, we can braid the ancillary
dual defects around the primal defects [7], as shown in
Figure 3.

Furthermore, the error rate of a TQEC circuit is highly re-
lated to the distance between defects. Two defects of different
types cannot overlap with each other, and two disjoint defect
structures of the same type cannot overlap with each other as
well. For simplicity, two defects are separated by one unit if
they are not allowed to overlap with each other in this thesis.

We can convert any fault-tolerant quantum circuit into the
ICM representation [8] that consists of qubit (I)nitialization,
(C)NOT gates, and (M)easurements. Then, an ICM circuit can
be easily mapped to a canonical geometric description [9]. For
example, Figure 4(a) shows an ICM circuit with three CNOT
gates, and Figure 4(b) shows the corresponding canonical ge-
ometric description with three dual loops l1, l2, and l3 braided
around primal loops. The functionality of a TQEC circuit
remains unchanged under any topological deformation, which
means that the deformed braids are topologically equivalent
to the canonical braids [7].

The required resource of a TQEC circuit is abstracted to
its space-time volume of the geometric description. The space
volume represents the 2D quantum hardware resources (i.e.,
the number of physical qubits) for quantum computing, and
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Fig. 4. An example of a quantum circuit with three CNOT gates. (a)
The ICM representation. (b) The canonical geometric description of
(a).
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Fig. 5. Examples of our motivation. (a) The compressed geometric
description after only topological deformation. (b) The optimized
geometric description after bridge compression and topological de-
formation.

the time volume represents the required executing time steps
for quantum operations. To solve difficult problems in the
real world, minimizing the space-time volume for large-scale
TQEC circuits becomes crucial.

To lower the overhead of large-scale quantum computing,
it is desirable to develop an automated tool to efficiently and
effectively optimize the space-time volume of TQEC circuits.
To the best of our knowledge, many studies focus on the
optimization using topological deformation, but few works
apply non-topological deformation such as bridge compression
for automated space-time volume minimization, which can
potentially compress TQEC circuits much more than the
topological one.

Figure 4(b) shows a canonical geometric description with
a volume of 54 (9×3×2). Figure 5(a) shows a compressed
circuit with a volume of 32 (4×4×2) after only topological
deformation, and Figure 5(b) shows an optimized circuit with a
volume of 18 (3×3×2) after bridge compression and topolog-
ical deformation. In this example, we can observe that bridge
compression has great potential to achieve much lower space-
time volume than only performing topological deformation.
Note that the distance between two disjoint defects is one unit,
and the volume is calculated by (#x×#y×#z) in this paper,
where #x, #y, and #z are the numbers of units on the x, y,
and z axes, respectively.

During the past decade, many approaches to synthesize and
optimize TQEC circuits have been proposed. A survey of
synthesis of TQEC circuit from an arbitrary quantum circuit is
given in Section I-A. Also, surveys of depth optimization for
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the ICM representation and space-time volume optimization
for TQEC circuits are given in Section I-B and Section I-C
respectively.

A. Synthesis of TQEC circuits

To realize a quantum algorithm, we first need to synthesize
a sequence of quantum gates (operations) and map the gates
to real hardware with the TQEC scheme. Therefore, several
works focus on synthesizing correct and simple TQEC circuits
in the surface code from an arbitrary quantum circuit [10],
[11], [12], [13], [7], [14], [15].

Paler et al. [7] presented the first automated framework
to synthesize a TQEC circuit from an arbitrary quantum
algorithm. Given a quantum circuit described by a list of
gates and the qubits it operates on, they first decomposed all
the gates to TQEC supported gates. Then, the decomposed
circuit was transformed into the ICM representation. Next,
the ICM circuit can be directly mapped to a 3D canonical
TQEC geometric description. Moreover, they also proposed a
distillation scheduler for placing distillation boxes, where the
introduction to distillation boxes will be given in Section II-A.

Paler et al. [14] developed a systematic and online method
for synthesizing compact TQEC circuits. Once an ancillary
state (i.e., |Y ⟩ or |A⟩) is successfully produced with a high
fidelity, it should be connected to the circuit initialization
by defect segments. Thus, they proposed an algorithm for
connecting the output of a box to the destination initializa-
tion through an area called connection pool. Furthermore,
they proposed an online box scheduler to deal with possible
distillation failures. Finally, they also proposed a spiral and
layered structure for distillation box placement to achieve a
lower space-time volume.

However, both of the works [7], [14] focus on synthesizing
general and correct TQEC circuits and do not contain effec-
tive volume optimization techniques. Therefore, both of the
synthesis methods may not be able to generate TQEC circuits
for large-scale practical problems with reasonable computation
resources.

B. Depth Optimization for ICM Representation

Because ICM representation is favorable for topological
quantum computation [8], minimizing the number of lines or
time steps (i.e., depth) in ICM models can potentially reduce
the space-time volume of the corresponding TQEC circuits.
Therefore, minimizing the number of lines and the depth of
an ICM circuit has attracted much attention recently.

AlFailakawi et al. [16] developed a hybrid approach com-
bining a left-edge greedy heuristic with a genetic algorithm
(GA) to minimize the depth of topological quantum circuits
in the ICM representation. They first used GA to find a
good qubit ordering, and then the left-edge heuristic was
performed to reduce the depth of the ICM circuit based on
the qubit ordering. Moreover, if multi-target CNOT gates
are allowed, their proposed method can merge gates together
without changing the circuit functionality, which can further
reduce the circuit depth.

Paler and Wille [17] proposed a wire recycling algorithm
to reduce the overhead of topological quantum circuits. They
devised a directed acyclic graph (DAG) called causal graph
to indicate the temporal ordering of initialization, gates, and
measurements. Based on the causal graph of an ICM circuit,
two optimization heuristics were proposed to recycle ordered
wires and unordered ones.

Adnan and Yamashita [18] presented a 2D logical qubit
arrangement algorithm for ICM representation in order to
reduce the number of time steps. They first identified a set
of gate groups by solving a clique cover problem, where each
gate group (i.e., a clique) consists of possibly non-overlapped
gates in the ICM representation. Then, for each gate group,
they enumerated all possible permutations of logical qubit
arrangements to find a valid arrangement that all gates in
the group can be executed in one time step. They used
πDD [19] to efficiently maintain the permutations of logical
qubit arrangements. In most cases, their proposed method can
find an optimal logical qubit arrangement, but it suffers from
long runtime for large cases. Therefore, they also proposed
a simulating annealing (SA)-based heuristic to significantly
improve runtime with little solution quality loss.

C. Space-time Volume Optimization for TQEC Circuits

To implement a quantum circuit with reasonable compu-
tation resources in the TQEC scheme, it is necessary and
desirable to reduce the space-time volume of the synthesized
3D geometric description. Therefore, several methods of the
space-time volume optimization for TQEC circuits have been
proposed in recent years.

Fowler and Devitt [20] presented a non-topological defor-
mation called bridge compression to compactify a TQEC cir-
cuit with manual efforts substantially. They provided a step-by-
step optimization process of a |Y ⟩ state distillation circuit and
an |A⟩ state distillation circuit, which shows the effectiveness
of bridge compression. However, we cannot perform manual
optimization on large TQEC circuits.

Paetznick and Fowler [21] presented two compression al-
gorithms for TQEC circuits. First, they proposed an efficient
force-directed algorithm that smoothly pushes or pulls defect
segments in a greedy way without destroying the braiding
relationship. Nevertheless, the forced-directed algorithm may
be stuck in a local minimum, and the solution quality is
highly related to the initial canonical geometric description.
Second, they proposed an SA-based algorithm. The entire
braided circuit can be described by a set of cuboids in a
mathematical form, where the cuboids must satisfy a set of
constraints. Then, the SA process is applied to explore more
solutions by accepting or rejecting the neighboring solution
of the current solution. A better neighboring solution would
always be accepted, while a worse neighboring solution would
be accepted with a possibility, which can avoid local minima.

Lin et al. [22] proposed an efficient depth minimization al-
gorithm for TQEC circuits with one-dimensional (1D) and 2D
qubit arrangements, which selected non-conflict dual-defect
routing patterns by solving a maximum weighted independent
set problem. However, their approach only considered the
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depth compression (along the time axis), so the space-time
volume of a TQEC circuit may not be globally minimized.
Furthermore, they proved the NP-hardness of the qubit routing
problem in layout synthesis of TQEC circuits.

D. Lattice Surgery Technique
Many studies used the lattice surgery technique in surface

code recently. Fowler and Gidney [23] compared the braiding
technique to the lattice surgery technique by an algorithm with
108 T gates and 100 logical qubits. Ali et al. [24] explored
different overheads when using planar (lattice surgery) and
double-defect (braiding) encodings. These studies show that
the lattice surgery technique costs less when the size is small
due to the smaller size of planar lattices. However, the braiding
technique becomes more efficient due to the better efficiency
of braids compared to the slower swaps as the size increases.

On the other hand, Herr et al. [25] showed that lattice
surgery optimization is NP-hard. Although the lattice surgery
technique has potential advantages, there is still not much
work effectively converting lattice surgery optimization into
traditional EDA problems. Nevertheless, we can apply mod-
ularization [26] to model the TQEC compression problem as
a placement-and-routing problem with the braiding technique.
With the conversion, we could obtain the desired compression
results to handle large-scale circuits. As a result, we focus on
the compression of braiding topological quantum circuits in
this paper.

We summarize our main contributions as follows:
• We present the first work that automatically optimizes the

space-time volume of TQEC circuits by bridge compres-
sion while considering state distillation boxes and time-
ordered measurement constraints.

• We develop an efficient iterative bridging algorithm to
construct bridge structures, unlike the previous work that
performs bridge compression with manual efforts.

• We propose time-ordering-aware 2.5D placement for
compaction of TQEC circuits and the satisfaction of time-
ordered measurement constraints.

• We propose an algorithm to merge primal modules into a
primal-group super-module, which can efficiently reduce
the problem size of the SA engine for 2.5D placement.

• We propose friend net-aware routing to reduce the re-
quired routing resource under topological deformation
effectively.

• We offer the width, height, depth (time), and volume
for experimental results, which show that our proposed
algorithm can averagely achieve 83% space-time volume
reduction compared with the state-of-the-art method [22].

• Experimental results show that integrating our proposed
iterative bridging algorithm into TQEC optimization flow
can averagely achieve a 28% volume reduction and an
average 35% runtime speedup.

• We analyze the runtime breakdown of our proposed
algorithm and conclude that a good module placement
with less wirelength can facilitate the routing process. If
we put much more effort into the placement stage, 85%–
95% nets can be successfully routed in the first routing
iteration.

The remainder of this paper is organized as follows. Sec-
tion II introduces state distillation boxes, time-ordered mea-
surement constraints, modularization, and the bridging rule,
and then formulates the TQEC circuit compression problem.
Section III details the core techniques of our algorithm.
Section IV shows the experimental results, and Section V
concludes this paper.

II. PRELIMINARIES

This section briefly introduces state distillation boxes in
TQEC circuits, time-ordered measurement constraints, the
concept of modularization, and the bridge compression in
Section II-A, Section II-B, Section II-C, and Section II-D,
respectively. Finally, we formulate the TQEC circuit compres-
sion problem in Section II-E.

A. State Distillation Box

In the TQEC scheme, a single-qubit rotation gate can
be implemented through teleportation with CNOT gates and
logical ancillary states |Y ⟩ and |A⟩ [7]:

|Y ⟩ = 1√
2
(|0⟩+ i|1⟩), (1)

|A⟩ = 1√
2
(|0⟩+ ei

π
4 |1⟩). (2)

These ancillary states must be prepared before injected into
the circuit. State distillation circuits are used to generate a
single high-fidelity ancillary state from multiple low-fidelity
ones. Typically, we use a box to hold the place for a distillation
circuit in geometric descriptions [7].

In this paper, we use the optimized state distillation circuits
obtained manually in [20], where the volume of a |Y ⟩ box
is 18 (3×3×2) and that of an |A⟩ box is 192 (16×6×2), as
shown in Figure 6 and Figure 7 respectively.
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Fig. 6. The |Y ⟩ state distillation circuit. (a) The |Y ⟩ state circuit
in the ICM representation. (b) The optimized TQEC circuit for |Y ⟩
state distillation.

B. Time-ordered Measurement Constraint

For TQEC circuits, most gates are invariant under any topo-
logical deformation. However, the measurements of certain
gates should obey a relative time ordering in the ICM represen-
tation. For example, a T gate can be implemented through state
injections along with gate teleportation [27]. Gate teleportation
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Fig. 7. The |A⟩ state distillation circuit. (a) The |A⟩ state circuit in
the ICM representation. (b) The optimized TQEC circuit for |A⟩ state
distillation.

contains probabilistic measurements, and the outcome of cir-
cuits depends on the measurement results [21]. Therefore, the
input measurement should be performed before the selective
teleportation measurements, which indicates the measurements
of a T gate should obey a time ordering. Figure 8(a) shows
a T gate in the ICM representation, where the topmost Z-
basis measurement must be performed before the other four
selective teleportation measurements [8]. Figure 8(b) shows a
valid geometric description of the circuit in Figure 8(a), which
meets the time-ordered measurement constraint. Note that in
this thesis, time goes from left to right.

Furthermore, the selective teleportation measurements of
distinct T gates operating on the same qubit in the ICM
representation should also obey a time ordering [8]. The
selective teleportation measurements of a T gate must be
performed after those of the previous T gate are performed.
Figure 8(c) shows a circuit with two T gates operating on
a qubit, and the corresponding ICM representation is shown
in Figure 8(d). To transform the circuit into a geometric
description, we need to ensure that the selective teleportation
measurements of the first T gate (the left dotted box) must be
performed before the selective teleportation measurements of
the second T gate (the right dotted box) are performed.

C. Modularization

Asai and Yamashita [26] proposed modularization that
transforms the complicated TQEC circuit compression prob-
lem into a placement-and-routing problem. Modules of a
TQEC circuit are derived from the canonical form by breaking
all dual loops into a set of two-pin nets. The parts of dual loops
penetrating a primal loop are kept in modules to preserve the
braiding information, so a module consists of a primal loop
enclosing dual segments.
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Fig. 8. (a) A T gate in the ICM representation with |Y ⟩ and |A⟩ state
injection . (b) The TQEC canonical form of a T gate with a |Y ⟩ box
and an |A⟩ box. (c) An example circuit with two T gates operating
on the same qubit. (d) The ICM representation of (c).

Figure 9 shows an example of modularization of a quantum
circuit with three CNOT gates. First, the ICM circuit in Figure
9(a) will be transformed into its canonical TQEC circuit shown
in Figure 9(b). Then, by breaking all the three dual loops l1, l2,
and l3, there are six modules and nine dual-defect nets derived
from the canonical form, as shown in Figure 9(c), where mi

denotes the ith module. Finally, Figure 9(d) shows the labels
of pins in each module, where pij,k denotes the kth pin of the
jth dual segment enclosed by module mi.

After the modularization of the canonical TQEC cir-
cuit, all the modules should be placed in the 3D space
while the total volume, estimated total wirelength of all
dual-defect nets, and routability should be optimized. Fi-
nally, the dual-defect nets should be routed to restore the
dual loops. Note that the nets of a dual loop can be
reconfigured as long as the dual loop can be restored.
For example, both {(p23,2, p51,2), (p51,1, p42,1), (p42,2, p23,1)} and
{(p23,2, p51,2), (p51,1, p42,2), (p42,1, p23,1)} are valid net sets for l3
in Figure 9.

D. Bridge Compression

The bridge compression technique is proposed to lower the
TQEC computation overhead by Fowler and Devitt [20]. A
bridge can only be added between two disjoint finite extent
same-type defect structures. After adding a bridge, the two
structures are merged by a continuous common segment,
defined as the segments of the two structures that pass through
the same loops in the identical order. To achieve better circuit
compaction, we should bridge two structures with a longer
continuous common segment.

Figure 10(a) shows an initial TQEC circuit. To obtain the
longest continuous common segments, we can topologically
deform the TQEC circuit because the topological deformation
maintains the braiding relationship between primal defects and
dual defects, as shown in Figure 10(b). Two same braiding
relationships can get identical computation results. Then, a

Authorized licensed use limited to: UCLA Library. Downloaded on June 29,2022 at 22:50:05 UTC from IEEE Xplore.  Restrictions apply. 



0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3161597, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH YEAR 6

𝑚5

(c) (d)

𝑝1,1
4 𝑝2,1

4

𝑝1,2
4 𝑝2,2

4

𝑚4

𝑝1,1
5

𝑚5

𝑝1,2
5

𝑝1,1
1

𝑚1

𝑝1,2
1

𝑝1,1
6

𝑚6

𝑝1,2
6

𝑝1,1
3

𝑚3

𝑝1,2
3

𝑚2

𝑝1,1
2

𝑝1,2
2

𝑝2,1
2

𝑝2,2
2

𝑝3,1
2

𝑝3,2
2

Primal defect Dual defectI/M Net

𝑚6

𝑚1

𝑚2

𝑚3

𝑚4

𝑙1
𝑙3

𝑙2

(a)

𝑖1

𝑖2

𝑖3

𝑜2

𝑜1

𝑜3

(b)

𝑙2𝑙1 𝑙3

𝑖1
𝑖2

𝑖3

𝑜2

𝑜1

𝑜3

Fig. 9. An example of modularization. (a) An ICM circuit with three
CNOT gates. (b) The canonical TQEC circuit of (a). (c) The modules
and nets derived from (b). (d) The labels of pins in each module.

bridge is added between the two dual loops (structures) shown
in Figure 10(c), and Figure 10(d) shows the resulting bridge
structure consisting of two dual loops by merging the common
segment.

Note that we can add only one bridge between two struc-
tures; that is, the two structures would be merged by only
one continuous segment. Otherwise, an extra loop would
be induced, which will change the computation and thus is
forbidden. For example, Figure 10(e) shows a wrong bridge
structure from Figure 10(a) because there are two bridges
added between two dual loops. In Figure 10(f), an extra dual
loop is thus induced in the middle by merging two common
segments from Figure 10(e). An extra dual loop breaks the
braiding relationship and causes errors in the computation
results. Although we can bridge two disjoint primal/dual struc-
tures, however, we only add a bridge between dual structures
to simplify and tackle the TQEC circuit compression problem
in this thesis.

E. Problem Formulation

The TQEC circuit compression problem can be formally
defined as follows:

• The TQEC Circuit Compression Problem: Given a
quantum circuit synthesized from a quantum algorithm,
generate a 3D geometric description for TQEC computa-
tion such that the space-time volume is minimized while
the time-ordered measurement constraints are satisfied
and state distillation boxes are integrated.

III. PROPOSED ALGORITHMS

The space-time volume optimization of TQEC circuits is
complicated due to the maintenance of braids, the integration

(b)(a) (c)

Dual defect Primal defect

(e)(d) (f)

Extra dual loop

Fig. 10. (a) The initial TQEC circuit. (b) The circuit after topological
deformation. (c) A bridge added between two dual loops from (b).
(d) A dual bridge structure consisting of two dual loops derived
by merging the common segment from (c). (e) Two bridges added
between two dual loops from (a). (f) A wrong bridge structure from
(e).

with state distillation boxes, and the time-ordered measure-
ment constraints. Therefore, we propose an algorithm to
optimize the space-time volume of TQEC circuits by bridge
compression and topological deformation with the aid of
modularization [26]. Our proposed algorithm consists of four
major stages: (1) preprocess including gate decomposition and
modularization, (2) iterative bridging, (3) module placement,
and (4) dual-defect net routing. Figure 11 shows the overall
flow of our proposed algorithm. The following subsections
detail each stage.

3D Geometric Description

Preprocess

Quantum Circuit

Dual-defect Net Routing

Module Placement

Module Clustering

2.5D Placement

Iterative Bridging

Fig. 11. Overview of our algorithm.

A. Preprocess
Each quantum computing architecture supports a specific

gate set for universal computations. For TQEC computations,
we apply the method [7] to decompose the gates of an arbitrary
quantum circuit into the universal gate set {CNOT,P, V, T}
for the TQEC scheme, where the permutation matrix forms of
each gate are listed as follows:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (3)
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P =

(
1 0
0 i

)
, (4)

V =

(
1 −i
−i 1

)
, (5)

T =

(
1 0
0 ei

π
4

)
. (6)

However, TQEC does not directly support the implementation
of Toffoli gates that are widely used in classical reversible
circuits. In order to implement a Toffoli gate, we need to
decompose it into a sequence of CNOT, P, T, and H gates [28],
as shown in Figure 12. Similarly, a Hadamard (H) gate can
be decomposed into the P, V, P gate sequence [7]. Figure 13
shows the implementation of TQEC supported gates including
P, H, and T gates.

(a) (b)
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Fig. 12. (a) A Toffoli gate. (b) The decomposed Toffoli gate.
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Fig. 13. The TQEC supported gates. (a) The P gate in the ICM representation.
(b) The TQEC circuit for the P gate. (c) The H gate in the ICM representation.
(d) The TQEC circuit for the H gate. (e) The T gate in the ICM representation.
(f) The TQEC circuit for the T gate.

After gate decomposition, the decomposed quantum circuit
with only TQEC supported gates can be transformed into the
ICM representation. Next, the ICM circuit is mapped to the
canonical geometric description, which only takes linear time
with respect to the number of CNOT gates. According to
the canonical form, a TQEC circuit is then decomposed into
modules and dual-defect nets by modularization, as described
in Section II-C.

B. Iterative Bridging

After the preprocessing stage, the iterative bridging is per-
formed to merge dual loops into bridge structures by adding
bridges. A bridge structure is composed of several bridged
dual loops. For example, there is one bridge structure in
Figure 10(d). During the bridging process, each dual loop
maintains a set of chains for the flexibility of bridging. Each
chain is a sequence of consecutive pins, and the starting pin
and the ending pin are both called endpoint pins. Initially,
for every loop, the two pins of each penetrated module form
a chain. After a loop is merged to a bridge structure, the
chains of loops in the bridge structure may be extended since
they form a continuous common segment with the merged
loop. Besides, a loop in a bridge structure is said to be
reconstructable if its chains can be restored to a single loop
by connecting all of its chains. Moreover, if two dual loops
penetrate the same module, the module is called a common
module of the two loops. For example, in Figure 9(d), module
m4 is a common module of l1 and l3 since both dual loops
penetrate m4. Furthermore, if loop li has at least one common
module with loop lj , then li is called a relative loop of lj and
vice versa.

Algorithm 1 shows our proposed iterative bridging algo-
rithm to iteratively add bridges and merge dual loops into a
bridge structure. First, all dual loops are pushed into set O and
marked as unprocessed (line 1). Once a dual loop is merged
to a bridge structure, it will be removed from O and marked
as processed. In each iteration, we select an unprocessed loop
li from O as the initial bridge structure b (line 4) and push the
unprocessed relative loops of li into the max-priority queue Q
(lines 5–6), which are candidate loops that could be merged to
b. The priority of a loop in Q is determined by its number of
common modules with b since we tend to merge a loop into a
bridge structure with a potentially longer continuous common
segment. Moreover, the loops in Q are extracted sequentially
until Q is empty (lines 8–9), and we check whether the
extracted loop le can be merged to b (lines 10–12). If le fails to
be merged to b, it would never be pushed into Q in the current
iteration. On the other hand, if le can be successfully merged to
b (line 13), the chains of loops in b will be updated according
to the continuous common segment of b and le (line 14).
Then, le’s unprocessed relative loops are pushed into Q as
merged candidates (line 15). Besides, the keys to loops in Q
would be updated accordingly since le is merged to b (line 16).
Finally, le would be removed from O and marked as processed
(line 17). This iterative bridging algorithm’s worst-case and
best-case time complexity are O(n2) and O(n), respectively.
Here n represents the number of dual loops.

Loop le could be merged to bridge structure b if we can find
a continuous common segment that penetrates all common
modules of b and le, and the continuous common segment
cannot destroy the reconstructability of all loops in b. To find a
continuous common segment of b and le, we construct a bridge
graph Gb,le = (V,E). The bridge graph construction consists
of two steps: vertex construction and edge construction.

1) Vertex Construction: First, the pins of common modules
between b and le are vertices in Gb,le . Second, if two chains
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Algorithm 1 IterativeBridging(D)
Input: D: the set of dual loops.
Output: B: the set of bridge structures.
1: Push all dual loops in D into set O
2: B ← ∅
3: while O is not empty
4: Select loop li from O as initial bridge structure b
5: Initialize max-priority queue Q
6: Push the unprocessed relative loops of li into Q
7: Remove li from O and mark li processed
8: while Q is not empty
9: Extract loop le from Q

10: Construct bridge graph Gb,le

11: Determine the order of critical vertices
12: Perform path finding for critical vertices
13: if a valid path exists in Gb,le

14: Merge le into b and update the chains of loops in b
15: Push the unprocessed relative loops of le into Q
16: Update the keys to loops in Q
17: Remove le from O and mark le processed
18: B ← B ∪ b
19: return B

belonging to different loops in b share a common endpoint pin,
then the endpoint pin is also a vertex in Gb,le . Note that for a
bridge structure, we only need to consider one dual segment
in a module. That is, each module contains only two pins for
a bridge structure, so we use m′

i to denote a module instead
of mi in b. The vertex derived from pin p′ij is denoted by vij ,
where p′ij denotes the jth pin of module m′

i in b.
2) Edge Construction: First, if pi1j1 and pi2j2 are endpoints

of different chains within a loop, then edge e(vi1j1 , v
i2
j2
) is

constructed in Gb,le . Second, for each pair of consecutive
pins pi3j3 and pi4j4 in a chain, then edge e(vi3j3 , v

i4
j4
) would be

constructed if both vi3j3 and vi4j4 exist in Gb,le .
To merge le to b, the continuous common segment should

penetrate all common modules of le and b. It implies that the
vertices derived from the pins of common modules should
be connected in series, and such vertices are called critical
vertices. Therefore, our target is to find a path passing through
all critical vertices in a specific order while the path does not
destroy the reconstructability of each loop in b. Actually, the
path indicates the continuous common segment for bridging
b and le. Before path searching, we need to determine the
connecting order of critical vertices. A valid connecting order
can be obtained by following the two pin vertices of each
common module sequentially. For example, for two common
modules m′

1 and m′
2, the order ⟨v11 , v12 , v21 , v22⟩ is valid, but the

order ⟨v11 , v21 , v22 , v12⟩ is invalid due to the discontinuity of the
pin vertices of m′

1 (i.e., v11 and v12).
After the connecting order is determined, we perform path

searching on Gb,le in order to find a path that follows the
specific vertex order. Once a path is found in Gb,le , we will
check if it is a valid path defined as a path that does not destroy
the reconstructability of the loops in b. If a valid path is found,
then le would be merged to b, and all the chains associated
with the path would be updated. For edges in the valid path, if
it connects two disjoint chains within a loop in b, the chains
would be connected as one chain. The continuous common
segment becomes a chain of le.

The whole iterative bridging process terminates when all
dual loops are processed (i.e., O is empty). After all the bridge
structures are constructed, we generate dual-defect nets by
reconstructing all the loops in bridge structures, where all the
nets should be connected in the following routing stage. Note
that no duplicate nets will be generated.

Figures 14, 15, and 16 show an example of performing
iterative bridging on the circuit in Figure 9. We want to
know whether the dual defects in modules can be merged in
Figure 9(d). Consequently, we need to iteratively add legal
dual loops to construct bridge structures. First, l1 is selected
as the initial bridge structure b in Figure 14(a), and the chain
set of l1 is {p′11 –p′12 , p

′2
1 –p′22 , p

′4
1 –p′42 } in Figure 14(b). Because

l2 and l3 respectively share one common module (m′
2) and

two common modules (m′
2 and m′

4) with l1, they are pushed
into the max-priority queue Q with keys 1 and 2, respectively.
The key of a dual loop in the max-priority queue Q is the
number of common modules with the current bridge structure
b because we intend to bridge two structures with a longer
common segment.

To check and process the merged candidate, we extract l3
from Q in Figure 15. As shown in Figure 15(b), m′

2 and m′
4 are

common modules of b and l3 (i.e., l1 and l3). Then, we intend
to construct the bridge graph Gb,l3 for b and l3, as shown in
Figure 15(c), to check if l3 can be merged to b. For vertex
construction, since m′

2 and m′
4 are common modules between

b and l3, v21 , v22 , v41 , and v42 are constructed by p21, p22, p41, and
p42, respectively. For edge construction, because v21 and v41 are
vertices derived from endpoint pins of different chains within
l1, e(v21 , v

4
1) is constructed. Similarly, e(v21 , v

4
2), e(v

2
2 , v

4
1), and

e(v22 , v
4
2) are also constructed. In other words, we construct the

edges between any endpoint pins of different chains together.
Besides, e(v21 , v

2
2) is constructed since v21 and v22 are two

consecutive pins in a chain. Similarly, e(v41 , v
4
2) is constructed.

Suppose that the connecting order is ⟨v22 , v21 , v42 , v41⟩, a valid
path for continuous common segment is shown in Figure 15(c).
We can see that after bridging b and l3 with the continuous
common segment, the reconstructability of the loops in b is not
destroyed because both l1 and l3 can be restored to a single
loop by connecting all chains in the chain set, as shown in
Figure 15(d). Furthermore, after l3 is merged to b, the chain
set of l1 is updated as {p′41 –p′42 –p′21 –p′22 , p

′1
1 –p′12 }, and that of

l3 is {p′41 –p′42 –p′21 –p′22 , p
′5
1 –p′52 }.

Repeating the above steps for merging l2 to b, the bridge
graph Gb,l2 is constructed, as shown in Figure 16(c). Note
that v42 is constructed because p′42 is the common endpoint
of the two chains belonging to l1 and l3. Finally, eight dual-
defect nets are generated by reconstructing all the loops in b,
as shown in Figure 16(d).

C. Module Placement

In the placement stage, we need to place all the modules
in 3D space with the optimization of total wirelength and
routability while considering time-ordered measurements and
state distillation boxes for universal computations. In this
work, we use the optimized distillation boxes obtained in [20],
where the volume of a |Y ⟩ box is 18 (3×3×2) and that of
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Fig. 14. An example of performing iterative bridging on the TQEC
circuit in Figure 9. (a) l1 is selected as the initial bridge structure b.
(b) The initial bridge structure b.
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Fig. 15. An example of performing iterative bridging on the TQEC
circuit in Figure 9. (a) l3 is selected from the max-priority queue Q.
(b) The common modules of b and l3. (c) The bridge graph Gb,l3 .
(d) The resulting bridge structure after adding l3.

an |A⟩ box is 192 (16×6×2). |Y ⟩ and |A⟩ state distillation
boxes are regarded as modules and should be placed as
well. To satisfy the constraint or reduce the problem size,
we cluster some primal modules into a super-module for
state injections, time-ordered measurements, and primal-group
module formation. Next, we perform 2.5D placement while
considering wirelength, routability, and time-ordered measure-
ment constraints. We use the 2.5D B*-tree representation [29]
to model the modules (or super-modules), where each node
denotes a module (or a super-module). The two major steps in
the placement stage are detailed in this section. Section III-C1
introduces module clustering, and Section III-C2 details 2.5D
module placement.

1) Module Clustering: Both time-ordered measurements
and distillation boxes for state injections should be placed in
certain ordering along the time axis. Therefore, we propose
module clustering to handle the time-ordered measurement
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Fig. 16. An example of performing iterative bridging on the TQEC
circuit in Figure 9. (a) l2 is selected from the max-priority queue Q.
(b) The common modules of b and l2. (c) The bridge graph Gb,l2 .
(d) The resulting bridge structure after adding l2.

issue and the integration of state distillation boxes. There are
three types of super-modules: time-dependent super-modules,
distillation-injection super-modules, and primal-group super-
modules. We detail each type of super-modules below.

• Time-dependent super-module: The T gate measure-
ments in the ICM representation should be performed
in a specific time ordering, as mentioned in Section II-B.
Therefore, we cluster the modules associated with the five
measurements of a T gate into a time-dependent super-
module. To meet the time-ordering constraint of T gate
measurements, the module associated with the first Z-
basis measurement must be placed on the left side of
the four modules associated with the four selective tele-
portation measurements of the T gate. Besides, the four
modules are placed vertically and aligned by their right
boundaries (i.e., measurements). By this arrangement, the
first Z-basis measurement must be performed before the
four selective teleportation measurements of a T gate.
Figure 17(a) shows an example of the time-dependent
super-module for a T gate, where the module on the left
is associated with the first Z-basis measurement, and the
four modules on the right are associated with the four
selective teleportation measurements of the T gate. Note
that the sizes of time-dependent super-modules can be
different, depending on the sizes of modules associated
with the measurements of a T gate.

• Distillation-injection super-module: Ancillary states
|Y ⟩ or |A⟩ should be prepared before injected into the
circuit. Although a state distillation box can be placed
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at any position ahead of the injected module in the time
axis, we cluster a state distillation box and its injected
module into a distillation-injection super-module by di-
rectly connecting them to reduce the required primal-
defect routing resource between them and meet the
distillation-injection constraint. Figure 17(b) shows a |Y ⟩
state distillation-injection super-module, and Figure 17(c)
shows an |A⟩ state distillation-injection super-module.
Similar to time-dependent super-modules, the sizes of
distillation-injection super-modules may be different, de-
pending on the sizes of modules associated with the
injection.

• Primal-group super-module: After the time-dependent
super-module clustering and the distillation-injection
super-module clustering, each of the remaining unclus-
tered primal modules corresponds to a node in a 2.5D
B*-tree, which could induce a considerable number of
nodes and thus increase runtime. To reduce the number
of nodes, we propose an efficient algorithm to cluster the
primal modules directly connected by dual loops into a
primal-group super-module. We examine the primal mod-
ules sequentially, and the primal modules connected by
the same dual loop form a group until the upper limit of
the number of groups is reached or no unprocessed primal
modules remain. Since all the remaining primal modules
are examined only once, the time complexity is linear
to the number of the remaining primal modules. After
the primal-group super-module clustering, the number of
nodes in the 2.5D B*-tree would be significantly reduced.

(a) (b) (c)
Primal defect
Dual defectI/M

| ⟩𝑌 state distillation box 
| ⟩𝐴 state distillation box 

Fig. 17. Examples of super-modules. (a) A time-dependent super-
module. (b) A |Y ⟩ state distillation-injection super-module. (b) An
|A⟩ state distillation-injection super-module.

2) 2.5D Placement: Instead of general 3D architectures,
we propose to place all modules in a 2.5D architecture for its
higher regularity, which can benefit the routability. For a 2.5D
architecture, modules are divided into different tiers, where the
modules in each tier are placed in a 2D plane. All tiers are
stacked up to form a 2.5D architecture in the 3D space. We
use the 2.5D B*-tree representation [29] for the modules (or
super-module), and the placement of each tier is represented
by a 2D B*-tree [30], where each node in the tree represents
a module (or super-module). For example, Figure 18 shows
an example of a three-tier 2.5D B*-tree representation and the
corresponding B*-tree of each tier.

A simulated annealing (SA) engine is applied to mini-
mize the total volume and total estimated wirelength. Similar
to [29], we apply four perturbations of the 2.5D B*-tree to ex-
plore the solution space, including inter-/intra-tree node swap
and inter-/intra-tree node move. Note that it is not allowed to
rotate a module since the time ordering of the modules inside
both time-dependent super-modules and distillation-injection
super-modules would be changed after rotation. Furthermore,
to enhance routability, each module is slightly expanded to
preserve some routing regions around the module.

Time

Tier 2

Tier 1

Tier 3

Module
B*-tree node

Fig. 18. An example of a 2.5D B*-tree representation with three tiers
and the corresponding B*-tree for each tier.

To achieve a good trade-off between the total volume and
the total estimated wirelength, we use the cost function Φ to
evaluate the solution quality of a placement:

Φ = α · V

Vnorm
+ β · L

Lnorm
+ γ · (R−R∗)2, (7)

where V is the current placement volume, Vnorm is the average
placement volume, L is the current sum of total wirelength
estimated by Manhattan distances of all nets, Lnorm is the
average sum of total wirelength, R is the current placement
aspect ratio, R∗ is the desired placement aspect ratio, and α,
β, and γ are user-defined parameters. In our implementation,
R∗ is set to 1:2 (width:height), and α, β, and γ are set to 0.5,
0.5, 0.25, respectively.

The selective teleportation measurements among the T gates
operating on the same qubit should obey a relative time
ordering, as mentioned in Section II-B. To maintain the
ordering during the SA process, we create a time-dependent
super-module list (TSL) for each qubit. The time-dependent
super-modules associated with the T gates operating on the
same qubit are added to a TSL. Before the SA engine is
applied, the super-modules in a TSL are resized to the same
size. After a perturbation operation is performed on the 2.5D
B*-tree, the positions of time-dependent super-modules would
be identified. According to their relative time ordering, the
time-dependent modules in a TSL will be reallocated to the
identified positions. By the reallocation, the order of T gates
in a TSL is maintained after a perturbation operation. Besides,
the reallocation does not affect the positions of other modules
since the super-modules in a TSL are resized to an identical
size.

D. Dual-defect Net Routing

In this section, we detail our proposed dual-defect net
routing algorithm. First, we introduce the routing framework
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in Section III-D1. Next, Section III-D2 introduces the friend
net awareness during routing.

1) Routing Framework: In the routing stage, we should
route all the nets to restore the dual loops and bridge structures.
We adopt an iterative routing scheme that all unrouted nets will
attempt to be routed in each iteration once. In the first iteration,
all the nets are routed sequentially in the non-decreasing
order sorted by the Manhattan distance of each net, and the
A* search algorithm is applied to route each net within a
restricted search region. Initially, the search region of a net
is the bounding box of its two pins.

After the first iteration, the rip-up and reroute scheme is
applied to improve the routability for unrouted nets. The
negotiation-based rip-up and reroute technique [31] is adopted
to effectively alleviate routing congestion by maintaining a
history map, which is a common technique widely used in
electronic design automation (EDA) [32], [33], [34]. More-
over, if a net fails to be routed, the search region of the net
will be slightly expanded in the next iteration to explore more
routable regions.

The primal- and dual-defect segments in each module and
state distillation boxes should be regarded as obstacles for all
nets. Also, the routed nets should be viewed as obstacles for
other nets, except for friend nets, which will be introduced
later. Any net cannot overlap with obstacles during routing.
Furthermore, we use an R-tree [35] to efficiently maintain
all obstacles in a 3D space, where the average complexity of
performing a search on an R-tree with n objects is O(lg n).

2) Friend Net Awareness: In this subsection, we introduce
the concept of the friend net. If two nets share the same pin,
then they are defined as a friend net to each other with respect
to the pin. Once net ni is routed, the friend nets of ni with
respect to one of ni’s pin p can end on any point of the routed
path of ni instead of p. This rule is a kind of topological
deformation that does not change the braiding relationship and
thus is valid.

Figure 19(a) shows an example that n1 and n2 are friend
nets with respect to pin p. Therefore, after n1 is routed, as
shown in Figure 19(b), the unrouted net n2 can end on any
point of the routed path of n1 instead of p, as shown in
Figure 19(c). The friend net-aware routing can indeed reduce
the required routing resource and also enhance the routability.

Dual defectPrimal defect
(b)

𝑛!
𝑛" 𝑛#

𝑛$
(c)

𝑛!
𝑛"

𝑛#

𝑛$

Routed net
(a)

𝑛!
𝑛" 𝑛#

𝑛$

Unrouted net

𝑝 𝑝 𝑝

Fig. 19. The concept of the friend net. (a) All nets are unrouted. (b)
n1 is routed. (c) n2 can end on any point of n1 because they share
the pin.

IV. EXPERIMENTAL RESULTS

In this section, we show the experimental results of our pro-
posed algorithm for the TQEC circuit compression problem.
Section IV-A introduces the experimental setup. Next, Sec-
tion IV-B gives the benchmark statistics. Finally, Section IV-C
shows the experimental results of the proposed algorithm
compared to the state-of-the-art method.

A. Experimental Setup

We implemented our algorithm in the C++ programming
language with the Lemon graph library [37] and the Boost
C++ libraries [38]. All experiments were performed on a Linux
workstation with 4 Xeon 3.4 GHz CPUs with 64 GB memory.

B. Benchmark Statistics

The experiments were conducted on the RevLib bench-
marks [39] that are widely used reversible circuits in quantum
computing research. The benchmark statistics is summarized
in Table I. First, “#Qubitso” and “#Gates” denote the numbers
of qubits and gates (including CNOT gates, Toffoli gates,
etc.) respectively before the gate decomposition. Second,
“#Qubitsd”, “#CNOTs”, “#|Y ⟩”, and “#|A⟩” denote the num-
bers of qubits (including input qubits and ancillas), CNOT
gates, |Y ⟩ ancillas, and |A⟩ ancillas, respectively, after the gate
decomposition introduced in Section II. Besides, “Vol|Y ⟩” and
“Vol|A⟩” denote the total volume of |Y ⟩ state distillation boxes
and that of |A⟩ state distillation boxes respectively. Then,
“#Modules” and “#Nets” denote the numbers of modules and
nets respectively after modularization and iterative bridging.
Further, “#Nodes” denotes the number of nodes in the 2.5D
B*-tree after module clustering (the super-modules). Note
that we can measure the problem size reduction of the SA
algorithm by “#Modules” minus “#Nodes”.

C. Results and Comparisons

In this subsection, we first compare our proposed algorithm
with the state-of-the-art method [22] and our conference
version [36] to show the effectiveness of the proposed al-
gorithm in Section IV-C1. Next, we show the effectiveness
of bridging in Section IV-C2 and the runtime breakdown of
the proposed algorithm on each benchmark in Section IV-C3.
Finally, the layouts of optimized TQEC circuits are shown in
Section IV-C4.

1) Comparison with the State-of-the-art Method: The
space-time volume comparisons of our proposed algorithm
and the state-of-the-art method [22] and the conference ver-
sion [36] are summarized in Tables II and III, respectively.
Table IV gives the dimensions of the resulting TQEC circuits,
where “W”, “H”, “D”, and “Vol” denote the width, the
height, the depth (time), and the volume of a TQEC circuit,
respectively.

The total volumes (denoted by “Volt”) of them shown in
Table II and Table III are calculated by the original volumes
(denoted by “Volo”) of the synthesized TQEC circuits directly
plus the total volume of state distillation boxes, which is the
lower-bound volume, for a fair comparison. From Table II, we
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TABLE I
BENCHMARK STATISTICS.

Benchmark #Qubitso #Gates #Qubitsd #CNOTs #|Y ⟩ #|A⟩ Vol|Y ⟩ Vol|A⟩ #Modules #Nets #Nodes
4gt10-v1 81 5 6 131 168 42 21 756 4032 362 483 190
4gt4-v0 73 5 17 257 341 84 42 1512 8064 724 978 384
rd84 142 15 28 897 1162 294 147 5292 28224 2500 3339 1316
hwb5 53 5 55 1307 1729 434 217 7812 41664 3687 4982 1933
add16 174 49 64 1394 1792 448 224 8064 43008 3857 5167 2032
sym6 145 7 36 1519 1980 504 252 9072 48384 4255 5688 2257
cycle17 3 112 20 48 1911 2478 630 315 11340 60480 5321 7119 2833
ham15 107 15 132 3753 4938 1246 623 22428 119616 10560 14215 5566

TABLE II
COMPARISON OF THE SPACE-TIME VOLUME FOR THE STATE-OF-THE-ART WORK [22] AND OURS.

Benchmark Canonical [22] (1D) [22] (2D) Ours
Volume Ratio Volume Ratio Runtime (s) Volume Ratio Runtime (s) Volume Ratio Runtime (s)

4gt10-v1 81 136836 5.509 98322 3.958 0.9 91116 3.668 0.8 24840 1.000 14
4gt4-v0 73 535398 9.222 361152 6.221 0.3 327816 5.647 0.3 58056 1.000 25
rd84 142 6287400 13.944 2805246 6.221 8 2744316 6.806 9 450912 1.000 194
hwb5 53 13608294 11.493 9114828 7.698 28 8203548 6.928 24 1184040 1.000 438
add16 174 15028608 15.667 6449532 6.723 26 6173928 6.436 23 959262 1.000 629
sym6 145 18103176 10.462 1072836 6.196 39 9852336 5.694 34 1730352 1.000 791
cycle17 3 112 28469700 15.455 19082448 10.359 71 16843884 9.144 61 1842050 1.000 1375
ham15 107 111335928 17.058 69294822 10.617 459 63017484 9.655 396 6527070 1.000 4108
Avg. Ratio 12.351 7.249 6.657 1.000

TABLE III
COMPARISON OF THE SPACE-TIME VOLUME FOR THE CONFERENCE VERSION [36] AND OURS.

Benchmark Conference version [36] Ours
Volume Ratio Runtime (s) Volume Ratio Runtime (s)

4gt10-v1 81 25520 1.027 15 24840 1.000 14
4gt4-v0 73 58696 1.011 26 58056 1.000 25
rd84 142 451440 1.011 262 450912 1.000 194
hwb5 53 1341704 1.133 447 1184040 1.000 438
add16 174 1069362 1.115 590 959262 1.000 629
sym6 145 1971840 1.140 793 1730352 1.000 791
cycle17 3 112 2354100 1.278 1402 1842050 1.000 1375
ham15 107 7331454 1.123 4901 6527070 1.000 4108
Avg. Ratio 1.104 1.000

TABLE IV
THE DIMENSIONS AND TOTAL VOLUMES OF THE RESULTING TQEC CIRCUITS GENERATED BY THE STATE-OF-THE-ART WORK [22] AND OURS.

Benchmark Canonical [22] (1D) [22] (2D) Ours
W H D Vol W H D Vol W H D Vol W H D Vol

4gt10-v1 81 131 2 504 132048 357 2 131 93534 327 8 33 86328 45 24 23 24840
4gt4-v0 73 257 2 1023 525822 684 2 257 351576 612 8 65 318240 59 41 24 58056
rd84 142 897 2 3486 6253884 1545 2 897 2771730 1506 8 225 2710800 122 112 33 450912
hwb5 53 1307 2 5187 13558818 3468 2 1307 9065352 3117 8 327 8154072 184 165 39 1184040
add16 174 1396 2 5376 15009792 2295 2 1394 6398460 2193 8 349 6122856 174 149 37 959262
sym6 145 1519 2 5940 18045720 3510 2 1519 10663380 3222 8 380 9794880 208 177 47 1730352
cycle17 3 112 1910 2 7434 28397880 4974 2 1911 19010628 4386 8 478 16772064 175 277 38 1842050
ham15 107 3753 2 14814 111193884 9213 2 3753 69152778 8370 8 939 62875440 330 347 57 6527070

TABLE V
COMPARISON OF THE SOLUTION QUALITY W/O AND W/ ITERATIVE BRIDGING.

Benchmark W/o bridging W/ bridging
Volume Ratio Runtime (s) Ratio Volume Ratio Runtime (s) Ratio

4gt10-v1 81 33660 1.355 20 1.429 24840 1.00 14 1.00
4gt4-v0 73 76328 1.314 43 1.720 58056 1.00 25 1.00
rd84 142 640332 1.420 403 2.077 450912 1.00 194 1.00
hwb5 53 1659864 1.402 584 1.333 1184040 1.00 438 1.00
add16 174 1439064 1.500 740 1.176 959262 1.00 629 1.00
sym6 145 2509920 1.451 900 1.138 1730352 1.00 791 1.00
cycle17 3 112 2750895 1.493 1642 1.194 1842050 1.00 1375 1.00
ham15 107 8852480 1.356 6786 1.652 6527070 1.00 4108 1.00
Avg. Ratio 1.412 1.465 1.000 1.000
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TABLE VI
RUNTIME BREAKDOWN.

Benchmark Iterative bridging Module placement Dual-defect net routing Other Total (s)Time (s) Ratio (%) Time (s) Ratio (%) Time (s) Ratio (%) Time (s) Ratio (%)
4gt10-v1 81 0.11 0.77 13.10 91.6 1.08 7.55 0.01 0.07 14.30
4gt4-v0 73 0.25 1.01 20.92 84.76 3.47 14.06 0.04 0.07 24.68
rd84 142 2.15 1.11 151.37 78.18 39.84 20.57 0.25 0.13 193.61
hwb5 53 7.20 1.64 220.69 50.33 20.95 47.89 0.38 0.13 438.42
add16 174 6.77 1.07 234.31 37.26 386.78 61.51 0.99 0.16 628.85
sym6 145 8.58 1.08 536.09 67.73 245.69 31.06 0.64 0.08 791
cycle17 3 112 13.49 0.98 1043.32 75.89 317.15 23.07 0.83 0.06 1374.79
ham15 107 58.28 1.42 1999.18 48.67 2047.36 49.84 2.96 0.07 4107.78
Avg. 12.10 1.14 527.37 66.81 406.42 31.94 0.79 0.11 946.68

can see that the total volume of state distillation boxes only
takes a little portion (< 1%) of the total TQEC circuit volume
in most benchmarks.

The work [22] proposes 1D and 2D qubit arrangements, and
the results of both arrangements are also reported in Table II,
where 2D qubit arrangements do result in less space-time
volumes than 1D ones. Our proposed algorithm can averagely
achieve 91.0% volume reduction from the canonical forms
while the work [22] can only achieve 46.3% reduction. In
other words, our proposed method can achieve 84% volume
reduction from the work [22] with 2D qubit arrangements.
From Table I, the conference version [36] incurs too many
nodes in the 2.5D B*-tree representation for searching the
desired result by the SA engine for large-scale benchmarks.
We reduce the problem size by about half by constructing the
primal-group super-modules. On the other hand, the modules
that make up the primal-group super-modules are highly
correlated (connected to the same dual loops), which helps
get a better initial solution for the SA engine. After reducing
the problem size, we can easily get a better initial solution
by the SA engine and search for the desired result for a
large-scale circuit. Overall, our proposed method can achieve
a 9% volume reduction over the conference version [36]. The
experimental results justify the effectiveness of our proposed
compression algorithm.

2) Effectiveness of Bridging: To evaluate the effectiveness
of our proposed iterative bridging algorithm, we further con-
ducted experiments with and without the proposed iterative
bridging method. Table V gives the compression results. With
bridging, the volume for each benchmark is averagely reduced
by 41%. Besides, the runtime is significantly reduced for each
benchmark with bridging as well. To be more specific, the
bridging contributes averagely 46% runtime speedup.

Both the TQEC circuit volume and the runtime for each
benchmark can be reduced when the iterative bridging is
applied mainly due to the following two reasons. First, our
proposed iterative bridging can bridge many dual loops into
bridge structures. Therefore, the number of dual-defect nets
can be reduced, which diminishes the routing complexity.
Second, because the proposed friend net-aware routing cannot
be applied without bridging, the required routing resource thus
increases, which causes larger space-time volume for TQEC
circuits.

3) Runtime Breakdown: Table VI shows the runtime break-
down of our proposed algorithm on each benchmark. “Other”

includes parsing input files, preprocessing, and writing output
files, where these jobs take a little portion of the total runtime.
The iterative bridging stage only takes ∼ 1% of the total
runtime. The major consumers of runtime are the module
placement and the dual-defect net routing.

The module placement averagely consumes 66.89% of the
total runtime on all the benchmarks. Since the solution quality
of module placement can significantly affect the following
routing stage, we run more iterations of the SA process to
ensure that the total estimated wirelength and the volume are
both optimized well. If the number of iterations is not enough
for the optimization of the total wirelength and the total
volume, we may not even obtain a legal solution in the routing
stage due to heavy routing congestion. In our implementation,
we ran 2000–3000 iterations for each benchmark.

The dual-defect net routing averagely consumes 31.89%
of the total runtime on all the benchmarks. In most cases,
the runtime of routing stage is less than the placement stage.
Because a good module placement with less wirelength can
facilitate the routing process, we put much more effort on the
placement stage. Moreover, 85%–95% nets can be successfully
routed in the first routing iteration, which takes ∼ 70% of the
total routing runtime in most cases. Finally, the rip-up and
reroute process takes ∼ 30% of the total routing runtime.

4) Visualization: Figure 20(a) and Figure 20(b) show the
layouts of 4gt10-v1 81 and 4gt4-v0 73 respectively. We can
see that all modules are compact with a small space-time
volume.

V. CONCLUSION

In this paper, we have presented an effective algorithm
that optimizes space-time volumes of TQEC circuits while
considering time-ordered measurement constraints and the
integration of state distillation boxes. We have proposed an
iterative bridging technique that efficiently constructs bridge
structures for dual-defect loops. Under the placement-and-
routing framework, we have developed a time-ordering-aware
2.5D placement method that simultaneously optimizes the
circuit volume and meets the time-ordered measurement con-
straints, and we have also proposed the friend net-aware
dual-defect net routing that can improve the routability under
topological deformation. Experimental results have shown that
our proposed algorithm can compress much more space-time
volume of TQEC circuits than state-of-the-art work.
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Fig. 20. Visualization. (a) The layout of 4gt10-v1 81. (b) The layout
of 4gt4-v0 73.
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